1
|
Liu Q, Wang J, Li Y, Xu L, Xu W, Vetukuri RR, Xu X. Proteome and Metabolome Analyses of Albino Bracts in Davidia involucrata. PLANTS (BASEL, SWITZERLAND) 2025; 14:549. [PMID: 40006808 PMCID: PMC11858999 DOI: 10.3390/plants14040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Although the mechanisms underlying albino phenotypes have been examined in model plants and major crops, our knowledge of bract albinism is still in its infancy. Davidia involucrata, a relic plant called dove tree, is best known for the intriguing trait with a pair of white bracts covering the capitula. Here, comparative physiological, cytological, proteomic, and metabolomic analyses were performed to dissect the albinism mechanism of D. involucrata bracts. The bracts exhibited low chlorophyll and carotenoid contents, reduced photosynthetic efficiency, and impaired chloroplast structure. The severe deficiency of photosynthetic pigments and the substantial decrease in cuticle thickness made the bracts light-sensitive. In total, 1134 differentially expressed proteins (DEPs) were obtained between bracts and leaves. Pathway enrichment analysis of DEPs revealed that photosynthetic pigment biosynthesis and photosynthesis were suppressed, whereas protein processing in endoplasmic reticulum, flavonoid biosynthesis, and the ubiquitin-proteasome system (UPS) were activated in bracts. Strikingly, DEPs implicated in chloroplast development, including PPR and AARS proteins, were mainly down-regulated in bracts. We further investigated albinism-induced metabolic changes and detected 412 differentially abundant metabolites (DAMs). Among them, enhanced flavonoids accumulation can plausibly explain the role of bracts in pollinator attraction. Amino acids and their derivatives in bracts showed remarkably increased abundance, which might be causally linked to enhanced UPS function. Our work could lay foundations for understanding albinism mechanisms and adaptive significance of plant bracts and facilitate future utilization of D. involucrata resources.
Collapse
Affiliation(s)
- Qinsong Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China; (Y.L.); (L.X.); (W.X.)
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Yuying Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China; (Y.L.); (L.X.); (W.X.)
| | - Lei Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China; (Y.L.); (L.X.); (W.X.)
| | - Wenjuan Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China; (Y.L.); (L.X.); (W.X.)
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China; (Y.L.); (L.X.); (W.X.)
| |
Collapse
|
2
|
Wang F, Han C, Zhang J, Zhang P, Zhang X, Yue X, Zhao Y, Dai X. Comparative Genomic Analysis of Two Monokaryons of Auricularia heimuer Hei29. J Fungi (Basel) 2025; 11:122. [PMID: 39997416 PMCID: PMC11856363 DOI: 10.3390/jof11020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Auricularia heimuer is a valuable traditional Chinese fungus used as food and medicine. Hei29 is a strain derived from wild A. heimuer through systematic domestication and selection. It has been the primary A. heimuer variety in Northeast China for 30 years and offers the advantages of high yield, good commercial property, and stable traits. This study used protoplast nucleation on Hei29 to produce two amiable and paired monokaryons, Hei29-D1 and Hei29-D2. The genome of Hei29 was sequenced utilizing the Illumina PE150 and PacBio Sequel sequencing platforms. Hei29-D1 and Hei29-D2 had genomic sizes of 47.54 Mb and 47.49 Mb, GC contents of 56.95% and 56.99%, and an N50 of 2.37 Mb and 4.28 Mb, respectively. Hei29's genome possessed two phytoene synthase (PSY) protein genes, one of which-PSY encoded by g894-has a transmembrane domain. The phylogenetic tree showed that Hei29 shared the closest evolutionary relationship with Auricularia subglabra TFB-10046 SS5. Collinearity analysis showed that the correlation between the two monokaryons was as high as 90.81%. Cluster analysis revealed that Hei29 contains 12,362 core genes, 223 unique genes in Hei29-D1, and 228 unique genes in Hei29-D2. This study is the first to sequence two related and paired monokaryons from A. heimuer, which is critical for fully understanding the genetic composition and information of the characteristic strain of A. heimuer in Northeast China. It establishes the data and theoretical foundation for gene mining, usage, and molecular breeding. It further promotes the genetic breeding and active substance utilization of A. heimuer.
Collapse
Affiliation(s)
- Fengli Wang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Chuang Han
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
- College of Plant Protection, Northeast Agricultural University/Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Harbin 150030, China
| | - Jiechi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xiaojia Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xin Yue
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Yanshu Zhao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| |
Collapse
|
3
|
Burbano‐Erazo E, Ezquerro M, Sanchez‐Bel P, Rodriguez‐Concepcion M. Specific sets of geranylgeranyl diphosphate synthases and phytoene synthases control the production of carotenoids and ABA in different tomato tissues. PHYSIOLOGIA PLANTARUM 2025; 177:e70052. [PMID: 39821357 PMCID: PMC11738847 DOI: 10.1111/ppl.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes. Three plastid-localized GGPPS isoforms (referred to as SlG1-3) and three PSY enzymes (PSY1-3) are present in tomato (Solanum lycopersicum). Our previous work showed that SlG1 and PSY3 function together in the roots, whereas the rest of the isoforms are required in aerial tissues. Here we generated and analyzed combinations of double mutants lacking PSY1 or PSY2 and SlG2 or SlG3 to investigate the contribution of specific GGPPS and PSY pairs to the production of carotenoids and ABA in different tissues of the tomato plant. Despite that the loss of individual enzymes was found to trigger compensatory mechanisms that complicate interpretation of the results, the results confirm a major role for SlG3 in providing GGPP to PSY2 for housekeeping carotenoid biosynthesis in leaves, whereas SlG2 and PSY1 become most relevant when a more active production is required in flowers and breaker fruits, i.e., at the onset of ripening. We could also confirm that ABA production in the fruit pericarp is more dependent on PSY1 activity than on total carotenoid levels and that fruit size correlates with ABA levels accumulated in ripe rather than breaker fruits.
Collapse
Affiliation(s)
- Esteban Burbano‐Erazo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC‐Universitat Politècnica de ValènciaValènciaSpain
- Facultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
| | - Miguel Ezquerro
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC‐Universitat Politècnica de ValènciaValènciaSpain
| | - Paloma Sanchez‐Bel
- Department of Biology, Biochemistry and Natural SciencesUniversitat Jaume ICastellóSpain
| | - Manuel Rodriguez‐Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC‐Universitat Politècnica de ValènciaValènciaSpain
| |
Collapse
|
4
|
Beltrán J, Wurtzel ET. Carotenoids: resources, knowledge, and emerging tools to advance apocarotenoid research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112298. [PMID: 39442633 DOI: 10.1016/j.plantsci.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Carotenoids are a large class of isoprenoid compounds which are biosynthesized by plants, algae, along with certain fungi, bacteria and insects. In plants, carotenoids provide crucial functions in photosynthesis and photoprotection. Furthermore, carotenoids also serve as precursors to apocarotenoids, which are derived through enzymatic and non-enzymatic cleavage reactions. Apocarotenoids encompass a diverse set of compounds, including hormones, growth regulators, and signaling molecules which play vital roles in pathways associated with plant development, stress responses, and plant-organismic interactions. Regulation of carotenoid biosynthesis indirectly influences the formation of apocarotenoids and bioactive effects on target pathways. Recent discovery of a plethora of new bioactive apocarotenoids across kingdoms has increased interest in expanding knowledge of the breadth of apocarotenoid function and regulation. In this review, we provide insights into the regulation of carotenogenesis, specifically linked to the biosynthesis of apocarotenoid precursors. We highlight plant studies, including useful heterologous platforms and synthetic biology tools, which hold great value in expanding discoveries, knowledge and application of bioactive apocarotenoids for crop improvement and human health. Moreover, we discuss how this field has recently flourished with the discovery of diverse functions of apocarotenoids, thereby prompting us to propose new directions for future research.
Collapse
Affiliation(s)
- Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States.
| |
Collapse
|
5
|
Tong M, Xia W, Zhao B, Duan Y, Zhang L, Zhai K, Chu J, Yao X. Silicon alleviates the toxicity of microplastics on kale by regulating hormones, phytochemicals, ascorbate-glutathione cycling, and photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135971. [PMID: 39342841 DOI: 10.1016/j.jhazmat.2024.135971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Kale is rich in various essential trace elements and phytochemicals, including glucosinolate and its hydrolyzed product isothiocyanate, which have significant anticancer properties. Nowadays, new types of pollutant microplastics (MP) pose a threat to global ecosystems due to their high bioaccumulation and persistent degradation. Silicon (Si) is commonly used to alleviate abiotic stresses, offering a promising approach to ensure safe food production. However, the mechanisms through which Si mitigates MP toxicity are unknown. In this study, a pot culture experiments was conducted to evaluate the morphogenetic, physiological, and biochemical responses of kale to Si supply under MP stress. The results showed that MP caused the production of reactive oxygen species, inhibited the growth and development of kale, and reduced the content of phytochemicals by interfering with the photosynthetic system, antioxidant defense system, and endogenous hormone regulation network. Si mitigated the adverse effects of MP by enhancing the photosynthetic capacity of kale, regulating the distribution of substances between primary and secondary metabolism, and strengthening the ascorbate-glutathione (AsA-GSH) cycling system.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
6
|
Rao S, O'Hanna FJ, Saar L, Hazra A, Hullihen O, Giovannoni JJ, Li L. β-Carotene and its derivatives regulate pollen fertility in tomato. PLANT PHYSIOLOGY 2024; 196:1733-1736. [PMID: 39186557 DOI: 10.1093/plphys/kiae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
β-carotene promotes pollen germination and tube growth via a mechanism that regulates reactive oxygen species homeostasis in tomato.
Collapse
Affiliation(s)
- Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Franz Joseph O'Hanna
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Lily Saar
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Abhijit Hazra
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Olivia Hullihen
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - James J Giovannoni
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Qiu Y, Wang R, Zhang E, Shang Y, Feng G, Wang W, Ma Y, Bai W, Zhang W, Xu Z, Shi W, Niu X. Carotenoid biosynthesis profiling unveils the variance of flower coloration in Tagetes erecta and enhances fruit pigmentation in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112207. [PMID: 39084492 DOI: 10.1016/j.plantsci.2024.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Carotenoids play a pivotal role in plant. Tagetes erecta, commonly called marigold, has increasing nutritional and economic value due to its high level of carotenoids in flower. However, the functional genes in the carotenoid biosynthesis of T. erecta have not been studied. In this work, three T. erecta varieties with flowers of yellow, yellow-orange and orange color, respectively, were examined for carotenoids composition and corresponding expression profiling of biosynthetic genes at four developmental stages. The results indicated that the varieties with higher lutein content, orange-flower 'Juwang' and yellow-orange 'Taishan', exhibited significant upregulation of genes in the upstream biosynthesis pathway, especially PDS (phytoene desaturase), PSY (phytoene synthase) and ZDS (zeta-carotene desaturase), whereas downstream carotenoid cleavage genes CCD (carotenoid cleavage dioxygenase) were markedly downregulated throughout flower development in the highest lutein containing variety 'Juwang'. Furthermore, marigold TePDS, TePSYS3 and TeZDS were isolated and transformed into tomato. Overexpression of TePDS or TeZDS resulted in the promotion of fruit ripening and accumulation of carotenoids in the transgenic lines. On the other hand, marigold TePSYS3 showed multiple effects, not only on fruit carotenogenesis but also on pigmentation patterns in vegetative tissues and plant growth. Taken together, the variations in expression profiles of the biosynthetic genes contribute to dynamic change in carotenoid levels and diversity of flower coloration in T. erecta. These functional genes of T. erecta were verified in tomato and provide targets for genetic improvement of fruit carotenoids accumulation.
Collapse
Affiliation(s)
- Yaqiong Qiu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ruipeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Enqi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yafang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Guodong Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wenjing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yilong Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wenbo Bai
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng 242099, China
| | - Wan Zhang
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng 242099, China
| | - Zhiqiang Xu
- Anhui Provincial Key Laboratory of Tobacco Chemistry, Hefei 230088, China
| | - Wei Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Filyushin MA, Shchennikova AV, Kochieva EZ. Circadian Regulation of Expression of Carotenoid Metabolism Genes (PSY2, LCYE, CrtRB1, and NCED1) in Leaves of Tomato Solanum lycopersicum L. DOKL BIOCHEM BIOPHYS 2024; 518:393-397. [PMID: 39196523 DOI: 10.1134/s1607672924600611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/29/2024]
Abstract
The circadian dynamics of the expression of key genes of carotenoid metabolism (PSY2, LCYE, CrtRB1, and NCED1) in the photosynthetic tissue of tomato Solanum lycopersicum L. (cultivar Korneevsky) plants was characterized. An in silico analysis of the gene expression pattern was carried out and a high level of their transcripts was detected in the leaf tissue. qRT-PCR analysis of gene expression was performed at six time points during the day and showed the highest levels of PSY2, LCYE, and NCED1 transcripts in the second half of the light phase and CrtRB1 at the end of the dark phase. The content and composition of carotenoids in leaf tissue in the middle of the day was determined; it was shown that the leaf accumulates 1.5 times more compounds of the ɛ/β-branch of carotenoid biosynthesis pathway than compounds of the β/β-branch.
Collapse
Affiliation(s)
- M A Filyushin
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
9
|
Tong M, Zhai K, Duan Y, Xia W, Zhao B, Zhang L, Chu J, Yao X. Selenium alleviates the adverse effects of microplastics on kale by regulating photosynthesis, redox homeostasis, secondary metabolism and hormones. Food Chem 2024; 450:139349. [PMID: 38631205 DOI: 10.1016/j.foodchem.2024.139349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
10
|
Ziaei N, Talebi M, Sayed Tabatabaei BE, Sabzalian MR, Soleimani M. Intra-canopy LED lighting outperformed top LED lighting in improving tomato yield and expression of the genes responsible for lycopene, phytoene and vitamin C synthesis. Sci Rep 2024; 14:19043. [PMID: 39152138 PMCID: PMC11329737 DOI: 10.1038/s41598-024-69210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Greenhouses located at high latitudes and in cloudy areas often experience a low quality and quantity of light, especially during autumn and winter. This low daily light integral (DLI) reduces production rate, quality, and nutritional value of many crops. This study was conducted on Sakhiya RZ F1 tomato plants to evaluate the impact of LED lights on the growth and nutritional value of tomatoes in a greenhouse with low daily light due to cloudy weather. The treatments included LED growth lights in three modes: top lighting, intra-canopy lighting, and combined top and intra-canopy lighting. The results showed that although the combined top and intra-canopy lighting reached the maximum increase in tomato yield, exposure to intra-canopy LED lighting alone outperformed in tomato fruit yield increase (28.46%) than exposure to top LED lighting alone (12.12%) when compared to no supplemental lighting during the entire production year. Intra-canopy exposure demonstrated the highest increase in tomato lycopene (31.3%), while top and intra-canopy lighting exhibited the highest increase in vitamin C content (123.4%) compared to the control. The LED light treatment also had a very positive effect on the expression of genes responsible for metabolic cycles, including Psy1, LCY-β, and VTC2 genes, which had collinearity with the increase in tomato fruit production.
Collapse
Affiliation(s)
- Negar Ziaei
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Masoud Soleimani
- Department of Bio-Light, Golnoor Scientific Corporation, Golnoor Sadra, Isfahan, 81636-54714, Iran
| |
Collapse
|
11
|
Messeder JVS, Carlo TA, Zhang G, Tovar JD, Arana C, Huang J, Huang CH, Ma H. A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L. THE NEW PHYTOLOGIST 2024; 243:765-780. [PMID: 38798267 DOI: 10.1111/nph.19849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.
Collapse
Affiliation(s)
- João Vitor S Messeder
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tomás A Carlo
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guojin Zhang
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Juan David Tovar
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, 69060-001, Brazil
| | - César Arana
- Museo de Historia Natural and Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia University, Hohhot, 010000, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Di X, Rodriguez-Concepcion M. Exploring the Deoxy-D-xylulose-5-phosphate Synthase Gene Family in Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:3886. [PMID: 38005784 PMCID: PMC10675008 DOI: 10.3390/plants12223886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Isoprenoids are a wide family of metabolites including high-value chemicals, flavors, pigments, and drugs. Isoprenoids are particularly abundant and diverse in plants. The methyl-D-erythritol 4-phosphate (MEP) pathway produces the universal isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate in plant plastids for the downstream production of monoterpenes, diterpenes, and photosynthesis-related isoprenoids such as carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. The enzyme deoxy-D-xylulose 5-phosphate synthase (DXS) is the first and main rate-determining enzyme of the MEP pathway. In tomato (Solanum lycopersicum), a plant with an active isoprenoid metabolism in several tissues, three genes encode DXS-like proteins (SlDXS1 to 3). Here, we show that the expression patterns of the three genes suggest distinct physiological roles without excluding that they might function together in some tissues. We also confirm that SlDXS1 and 2 are true DXS enzymes, whereas SlDXS3 lacks DXS activity. We further show that SlDXS1 and 2 co-localize in plastidial speckles and that they can be immunoprecipitated together, suggesting that they might form heterodimers in vivo in at least some tissues. These results provide novel insights for the biotechnological use of DXS isoforms in metabolic engineering strategies to up-regulate the MEP pathway flux.
Collapse
Affiliation(s)
- Xueni Di
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC—Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC—Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
13
|
Li L, Liang Y, Liu Y, Sun Z, Liu Y, Yuan Z, Fu C. Transcriptome analyses reveal photosynthesis-related genes involved in photosynthetic regulation under low temperature stress in Lavandula angustifolia Mill. FRONTIERS IN PLANT SCIENCE 2023; 14:1268666. [PMID: 38107014 PMCID: PMC10722586 DOI: 10.3389/fpls.2023.1268666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
In order to reveal the mechanisms of photosynthetic regulation of Lavandula angustifolia Mill. under low temperature stress, photosynthesis-related genes were screened and the molecular mechanism were analyzed for this species growing in Harbin, northeast of China. RNA-seq technique and photosynthetic physiology measurement were performed under 20°C, 10°C, and 0°C in this study. The results showed that the observing modified rectangular hyperbola mode could accurately reflect the light-response processes under low temperature stress and the low temperature reduced the light energy utilization of L. angustifolia. The stomatal conductance decreased with the temperature dropping, which was associated with the up-regulation of LaBAM1s, LaMPK4-1 and LaMMK2. The up-regulation of LaMPK4-1 and LaMMK2 was beneficial for ROS scavenging. The improvement of cold resistance in L. angustifolia was related to the up-regulated expression of LaFBA and LaOMTs and down-regulated expression of LaGAPAs, LaGOX, and LaTKL1s with the temperature decreasing. The up-expression of LaPSY at 10°C than it at 20°C could protect the photosynthetic organs from oxidative damage. Moreover, the photosynthetic rates at 10°C and 0°C were close to the measured values, which was related to the interactions of RCA with SBPase and Rubisco with SBPase. These findings could provide a theoretical reference for further exploring the cold tolerance mechanism of L. angustifolia, as an important aromatic plant resource, and promoting its cultivation and distribution in the northeast of China.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yuchen Liang
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yinan Liu
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Zeyi Sun
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yuning Liu
- College of Science and Technology, Harbin Normal University, Harbin, China
| | - Zening Yuan
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Chang Fu
- College of Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|