1
|
Westwood SJ, Conti AA, Tang W, Xue S, Cortese S, Rubia K. Clinical and cognitive effects of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:4025-4043. [PMID: 37674019 PMCID: PMC10827664 DOI: 10.1038/s41380-023-02227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
This pre-registered (CRD42022322038) systematic review and meta-analysis investigated clinical and cognitive outcomes of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders. PubMed, OVID, Web of Science, Chinese National Knowledge Infrastructure, Wanfang, and VIP database for Chinese technical periodicals were searched (until 16/03/2022) to identify trials investigating cognitive and clinical outcomes of eTNS in neurological or psychiatric disorders. The Cochrane Risk of Bias 2.0 tool assessed randomized controlled trials (RCTs), while the Risk of Bias of Non-Randomized Studies (ROBINS-I) assessed single-arm trials. Fifty-five peer-reviewed articles based on 48 (27 RCTs; 21 single-arm) trials were included, of which 12 trials were meta-analyzed (N participants = 1048; of which ~3% ADHD, ~3% Epilepsy, ~94% Migraine; age range: 10-49 years). The meta-analyses showed that migraine pain intensity (K trials = 4, N = 485; SMD = 1.03, 95% CI[0.84-1.23]) and quality of life (K = 2, N = 304; SMD = 1.88, 95% CI[1.22-2.53]) significantly improved with eTNS combined with anti-migraine medication. Dimensional measures of depression improved with eTNS across 3 different disorders (K = 3, N = 111; SMD = 0.45, 95% CI[0.01-0.88]). eTNS was well-tolerated, with a good adverse event profile across disorders. eTNS is potentially clinically relevant in other disorders, but well-blinded, adequately powered RCTs must replicate findings and support optimal dosage guidance.
Collapse
Affiliation(s)
- Samuel J Westwood
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Social Science, University of Westminster, London, UK.
| | - Aldo Alberto Conti
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wanjie Tang
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Xue
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Technical University Dresden, Dresden, Germany
| |
Collapse
|
2
|
Börner C, Renner T, Trepte-Freisleder F, Urban G, Schandelmaier P, Lang M, Lechner MF, Koenig H, Klose B, Albers L, Krieg SM, Baum T, Heinen F, Landgraf MN, Sollmann N, Bonfert MV. Response Predictors of Repetitive Neuromuscular Magnetic Stimulation in the Preventive Treatment of Episodic Migraine. Front Neurol 2022; 13:919623. [PMID: 35989916 PMCID: PMC9384696 DOI: 10.3389/fneur.2022.919623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRepetitive neuromuscular magnetic stimulation (rNMS) of the trapezius muscles showed beneficial effects in preventing episodic migraine. However, clinical characteristics that predict a favorable response to rNMS are unknown. The objective of this analysis is to identify such predictors.MethodsThirty participants with a diagnosis of episodic migraine (mean age: 24.8 ± 4.0 years, 29 females), who were prospectively enrolled in two non-sham-controlled studies evaluating the effects of rNMS were analyzed. In these studies, the interventional stimulation of the bilateral trapezius muscles was applied in six sessions and distributed over two consecutive weeks. Baseline and follow-up assessments included the continuous documentation of a headache calendar over 30 days before and after the stimulation period, the Migraine Disability Assessment Score (MIDAS) questionnaire (before stimulation and 90 days after stimulation), and measurements of pain pressure thresholds (PPTs) above the trapezius muscles by algometry (before and after each stimulation session). Participants were classified as responders based on a ≥25% reduction in the variable of interest (headache frequency, headache intensity, days with analgesic intake, MIDAS score, left-sided PPTs, right-sided PPTs). Post-hoc univariate and multivariate binary logistic regression analyses were performed.ResultsLower headache frequency (P = 0.016) and intensity at baseline (P = 0.015) and a migraine diagnosis without a concurrent tension-type headache component (P = 0.011) were significantly related to a ≥25% reduction in headache frequency. Higher headache frequency (P = 0.052) and intensity at baseline (P = 0.014) were significantly associated with a ≥25% reduction in monthly days with analgesic intake. Lower right-sided PPTs at baseline were significantly related to a ≥25% increase in right-sided PPTs (P = 0.0.015) and left-sided PPTs (P =0.030). Performance of rNMS with higher stimulation intensities was significantly associated with a ≥25% reduction in headache intensity (P = 0.046).ConclusionsClinical headache characteristics at baseline, the level of muscular hyperalgesia, and stimulation intensity may inform about how well an individual patient responds to rNMS. These factors may allow an early identification of patients that would most likely benefit from rNMS.
Collapse
Affiliation(s)
- Corinna Börner
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tabea Renner
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Florian Trepte-Freisleder
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Giada Urban
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul Schandelmaier
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Lang
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias F. Lechner
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Helene Koenig
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Birgit Klose
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lucia Albers
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjam N. Landgraf
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- *Correspondence: Nico Sollmann
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
3
|
Evans AG, Horrar AN, Ibrahim MM, Burns BL, Kalmar CL, Assi PE, Brooks-Horrar KN, Kesayan T, Al Kassis S. Outcomes of transcutaneous nerve stimulation for migraine headaches: a systematic review and meta-analysis. J Neurol 2022; 269:4021-4029. [PMID: 35296960 DOI: 10.1007/s00415-022-11059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Implanted and transcutaneous nerve stimulators have shown promise as novel non-pharmacologic treatment for episodic and chronic migraines. The purpose of this study was to summarize the reported efficacy of transcutaneous single nerve stimulators in management of migraine frequency and severity. METHODS A systematic review of five databases identified studies treating migraines with transcutaneous stimulation of a single nerve. Random effects model meta-analyses were conducted to establish the effect of preventive transcutaneous nerve stimulation on headache days per month and 0-10 numeric rating scale pain severity of headaches for both individuals with episodic and chronic migraines. RESULTS Fourteen studies, which treated 995 patients, met inclusion criteria, including 7 randomized controlled trials and 7 uncontrolled clinical trials. Transcutaneous nerve stimulators reduced headache frequency in episodic migraines (2.81 fewer headache days per month, 95% CI 2.18-3.43, I2 = 21%) and chronic migraines (2.97 fewer headache days per month, 95% CI 1.66-4.28, I2 = 0%). Transcutaneous nerve stimulators reduced headache severity in episodic headaches (2.23 fewer pain scale points, 95% CI 1.64-2.81, I2 = 88%). CONCLUSIONS Preventive use of transcutaneous nerve stimulators provided clinically significant reductions in headache frequency in individuals with chronic or episodic migraines. Individuals with episodic migraines also experienced a reduction in headache pain severity following preventive transcutaneous nerve stimulation.
Collapse
Affiliation(s)
- Adam G Evans
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA.
| | - Abigail N Horrar
- Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Maryo M Ibrahim
- School of Medicine, Meharry Medical College, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA
| | - Brady L Burns
- School of Medicine, Meharry Medical College, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA
| | - Christopher L Kalmar
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| | - Patrick E Assi
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| | - Krista N Brooks-Horrar
- Department of Neurology, Nashville Veterans Affairs Medical Center, 1310 24th Avenue South, Nashville, TN, 37212, USA
| | - Tigran Kesayan
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| | - Salam Al Kassis
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37212, USA
| |
Collapse
|
4
|
Tsai CK, Tsai CL, Lin GY, Yang FC, Wang SJ. Sex Differences in Chronic Migraine: Focusing on Clinical Features, Pathophysiology, and Treatments. Curr Pain Headache Rep 2022; 26:347-355. [PMID: 35218478 DOI: 10.1007/s11916-022-01034-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on sex differences in chronic migraine (CM), with a focus on clinical characteristics, pathophysiology, and treatments. RECENT FINDINGS Approximately 6.8-7.8% of all migraineurs have CM, with an estimated prevalence of 1.4-2.2% in the general population. The economic burden caused by CM, including medical costs and lost working ability, is threefold higher than that caused by episodic migraine (EM). Notably, the prevalence of migraine is affected by age and sex. Female migraineurs with CM experience higher levels of headache-related disability, including longer headache duration, higher frequency of attacks, and more severely impacted efficiency at work. Sex hormones, including estrogen, testosterone, and progesterone, contribute to the sexually dimorphic characteristics and prevalence of migraine in men and women. Recent neuroimaging studies have indicated that migraine may have a greater impact and cause greater dysfunction in the organization of resting-state functional networks in women. Accumulating evidence suggests that topiramate, Onabotulinumtoxin A and calcitonin gene-related peptide (CGRP) monoclonal antibodies are effective as the preventative treatments for CM. Recent evidence highlights a divergence in the characteristics of CM between male and female populations. The data comparing the treatment response for CM regarding sex are lacking.
Collapse
Affiliation(s)
- Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| | - Shuu-Jiun Wang
- Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou 112, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Abstract
Purpose of Review Neuromodulation devices have become an attractive alternative to traditional pharmacotherapy for migraine, especially for patients intolerant to medication or who prefer non-pharmacological options. In the past decades, many studies demonstrated the efficacy of neuromodulation devices in patients with episodic migraine (EM). However, the benefit of these devices on chronic migraine (CM), which is typically more debilitating and refractory than EM, remains not well studied. Recent Findings We reviewed the literature within the last five years on using FDA-cleared and investigational devices for CM. There were eight randomized controlled trials and 15 open-label observational studies on ten neuromodulation devices. Summary Neuromodulation is promising for use in CM, although efficacy varies among devices or individuals. Noninvasive devices are usually considered safe with minimal adverse events. However, stimulation protocol and methodology differ between studies. More well-designed studies adhering to the guideline may facilitate FDA clearance and better insurance coverage.
Collapse
|
6
|
Renner T, Sollmann N, Heinen F, Albers L, Trepte-Freisleder F, Klose B, König H, Krieg SM, Bonfert MV, Landgraf MN. Alleviation of migraine symptoms by application of repetitive peripheral magnetic stimulation to myofascial trigger points of neck and shoulder muscles - A randomized trial. Sci Rep 2020; 10:5954. [PMID: 32249788 PMCID: PMC7136237 DOI: 10.1038/s41598-020-62701-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Migraine is a burdensome disease with an especially high prevalence in women between the age of 15 and 49 years. Non-pharmacological, non-invasive therapeutic methods to control symptoms are increasingly in demand to complement a multimodal intervention approach in migraine. Thirty-seven subjects (age: 25.0 ± 4.1 years; 36 females) diagnosed with high-frequency episodic migraine who presented at least one active myofascial trigger point (mTrP) in the trapezius muscles and at least one latent mTrP in the deltoid muscles bilaterally prospectively underwent six sessions of repetitive peripheral magnetic stimulation (rPMS) over two weeks. Patients were randomly assigned to receive rPMS applied to the mTrPs of the trapezius (n = 19) or deltoid muscles (n = 18). Whereas the trapezius muscle is supposed to be part of the trigemino-cervical complex (TCC) and, thus, involved in the pathophysiology of migraine, the deltoid muscle was not expected to interfere with the TCC and was therefore chosen as a control stimulation site. The headache calendar of the German Migraine and Headache Society (DMKG) as well as the Migraine Disability Assessment (MIDAS) questionnaire were used to evaluate stimulation-related effects. Frequency of headache days decreased significantly in both the trapezius and the deltoid group after six sessions of rPMS (trapezius group: p = 0.005; deltoid group: p = 0.003). The MIDAS score decreased significantly from 29 to 13 points (p = 0.0004) in the trapezius and from 31 to 15 points (p = 0.002) in the deltoid group. Thus, rPMS applied to mTrPs of neck and shoulder muscles offers a promising approach to alleviate headache frequency and symptom burden. Future clinical trials are needed to examine more profoundly these effects, preferably using a sham-controlled setting.
Collapse
Affiliation(s)
- Tabea Renner
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Florian Heinen
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lucia Albers
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian Trepte-Freisleder
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Birgit Klose
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Helene König
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michaela V Bonfert
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjam N Landgraf
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|