1
|
Wulandari S, Nyampong S, Beránková M, Lokupathirage SMW, Yoshimatsu K, Shimoda H, Hayasaka D. Two amino acid pairs in the Gc glycoprotein of severe fever with thrombocytopenia syndrome virus responsible for the enhanced virulence. Virology 2025; 601:110294. [PMID: 39541832 DOI: 10.1016/j.virol.2024.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a significant public health concern, with a high fatality rate in humans and cats. In this study, we explored the genetic determinants that contribute to the different virulence of SFTS virus (SFTSV) based on Tk-F123 and Ng-F264 strains isolated from cats. Tk-F123 was 100% lethal in type I interferon receptor-knockout mice, whereas Ng-F264 exhibited no fatality. We identified a pair of amino acid residues in the Gc protein, glycine and serine, at residues 581 and 934, respectively, derived from Tk-F123, leading to a fatal infection. Those in Ng-F264 were arginine and asparagine. These results suggest that this pair of residues affects the Gc protein function and regulates SFTSV virulence. Our findings provide useful clues for the elucidation of viral pathogenicity and the development of effective live-attenuated vaccines and antiviral strategies.
Collapse
Affiliation(s)
- Shelly Wulandari
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan; Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Samuel Nyampong
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Michaela Beránková
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic; Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czech Republic
| | | | - Kumiko Yoshimatsu
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Daisuke Hayasaka
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
2
|
Shimojima M, Sugimoto S, Taniguchi S, Maeki T, Yoshikawa T, Kurosu T, Tajima S, Lim CK, Ebihara H. N-glycosylation of viral glycoprotein is a novel determinant for the tropism and virulence of highly pathogenic tick-borne bunyaviruses. PLoS Pathog 2024; 20:e1012348. [PMID: 39008518 PMCID: PMC11271937 DOI: 10.1371/journal.ppat.1012348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/25/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.
Collapse
Affiliation(s)
- Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| |
Collapse
|
3
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Wang X, Xu M, Ke H, Ma L, Li L, Li J, Deng F, Wang M, Hu Z, Liu J. Construction and Characterization of Severe Fever with Thrombocytopenia Syndrome Virus with a Fluorescent Reporter for Antiviral Drug Screening. Viruses 2023; 15:v15051147. [PMID: 37243233 DOI: 10.3390/v15051147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) caused by a novel bunyavirus (SFTSV) is an emerging infectious disease with up to 30% case fatality. Currently, there are no specific antiviral drugs or vaccines for SFTS. Here, we constructed a reporter SFTSV in which the virulent factor nonstructural protein (NSs) was replaced by eGFP for drug screening. First, we developed a reverse genetics system based on the SFTSV HBMC5 strain. Then, the reporter virus SFTSV-delNSs-eGFP was constructed, rescued, and characterized in vitro. SFTSV-delNSs-eGFP showed similar growth kinetics with the wild-type virus in Vero cells. We further detected the antiviral efficacy of favipiravir and chloroquine against wild-type and recombinant SFTSV by the quantification of viral RNA, and compared the results with that of fluorescent assay using high-content screening. The results showed that SFTSV-delNSs-eGFP could be used as a reporter virus for antiviral drug screening in vitro. In addition, we analyzed the pathogenesis of SFTSV-delNSs-eGFP in interferon receptor-deficient (IFNAR-/-) C57BL/6J mice and found that unlike the fatal infection of the wild-type virus, no obvious pathological change or viral replication were observed in SFTSV-delNSs-eGFP-infected mice. Taken together, the green fluorescence and attenuated pathogenicity make SFTSV-delNSs-eGFP a potent tool for the future high-throughput screening of antiviral drugs.
Collapse
Affiliation(s)
- Xiao Wang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huanhuan Ke
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Longda Ma
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liushuai Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Zhihong Hu
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Fares M, Brennan B. Virus-host interactions during tick-borne bunyavirus infection. Curr Opin Virol 2022; 57:101278. [PMID: 36375406 DOI: 10.1016/j.coviro.2022.101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
The Bunyavirales order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.
Collapse
Affiliation(s)
- Mazigh Fares
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Benjamin Brennan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
6
|
Ge HH, Wang G, Guo PJ, Zhao J, Zhang S, Xu YL, Liu YN, Ye XL, Wu YX, Li S, Yue M, Ji WJ, Geng SY, Li H, Zhang XA, Yang ZD, Cui N, Li W, Lin L, Liu W. Coinfections in hospitalized patients with severe fever with thrombocytopenia syndrome: A retrospective study. J Med Virol 2022; 94:5933-5942. [PMID: 36030552 DOI: 10.1002/jmv.28093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with a high case fatality rate. Few studies have been performed on bacterial or fungal coinfections or the effect of antibiotic therapy. A retrospective, observational study was performed to assess the prevalence of bacterial and fungal coinfections in patients hospitalized for SFTSV infection. The most commonly involved microorganisms and the effect of antimicrobial therapy were determined by the site and source of infection. A total of 1201 patients hospitalized with SFTSV infection were included; 359 (29.9%) had microbiologically confirmed infections, comprised of 292 with community-acquired infections (CAIs) and 67 with healthcare-associated infections (HAIs). Death was independently associated with HAIs, with a more significant effect than that observed for CAIs. For bacterial infections, only those acquired in hospitals were associated with fatal outcomes, while fungal infection, whether acquired in hospital or community, was related to an increased risk of fatal outcomes. The infections in the respiratory tract and bloodstream were associated with a higher risk of death than that in the urinary tract. Both antibiotic and antifungal treatments were associated with improved survival for CAIs, while for HAIs, only antibiotic therapy was related to improved survival, and no effect from antifungal therapy was observed. Early administration of glucocorticoids was associated with an increased risk of HAIs. The study provided novel clinical and epidemiological data and revealed risk factors, such as bacterial coinfections, fungal coinfections, infection sources, and treatment strategies associated with SFTS deaths/survival. This report might be helpful in curing SFTS and reducing fatal SFTS.
Collapse
Affiliation(s)
- Hong-Han Ge
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Gang Wang
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Pei-Jun Guo
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, People's Republic of China
| | - Jing Zhao
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.,General Demonstration Research Room of Aeromedicine, Air Force Medical Center, Beijing, People's Republic of China
| | - Shuai Zhang
- Department of Clinical Laboratory, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Yan-Li Xu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Yuan-Ni Liu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Xiao-Lei Ye
- The Center for Disease Prevention and Control in Western Theater Command of PLA Joint Logistic Support Force, Lanzhou, Gansu Province, People's Republic of China
| | - Yong-Xiang Wu
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Shuang Li
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wen-Juan Ji
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Shu-Ying Geng
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Hao Li
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Ai Zhang
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Zhen-Dong Yang
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan Province, People's Republic of China
| | - Ning Cui
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan Province, People's Republic of China
| | - Wei Li
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan Province, People's Republic of China
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Wei Liu
- State Key Laboratory Of Pathogen And Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.,Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, People's Republic of China
| |
Collapse
|
7
|
Yoo JR, Lee KH, Kim M, Oh HJ, Heo ST. Tocilizumab therapy for IL-6 increment in a patient with non-fatal severe fever with thrombocytopenia syndrome. Int J Infect Dis 2022; 122:656-658. [PMID: 35803471 DOI: 10.1016/j.ijid.2022.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022] Open
Abstract
We report the administration of an anti-interleukin (IL)-6 antibody in a case of severe fever with thrombocytopenia syndrome (SFTS) with an increase in IL-6. On the day of admission, SFTS viral load and IL-6 concentration were 93 831 copies/ml and 5.4 pg/ml, respectively, and tocilizumab was administered. SFTS viral load decreased to 17 821.1 copies/ml on the 3rd day of admission, while IL-6 levels increased to 104.9 pg/ml; SFTS viral load and IL-6 levels had decreased to 2876.4 copies/ml and 48.2 pg/ml on 7th day of admission, respectively. The patient fully recovered no tocilizumab adverse events.
Collapse
Affiliation(s)
- Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University, College of Medicine, Jeju
| | - Keun Hwa Lee
- Department of Microbiology, Hanyang University College of Medicine, Seoul, South Korea
| | - Misun Kim
- Department of Internal Medicine, Jeju National University, College of Medicine, Jeju
| | - Hyun Joo Oh
- Department of Internal Medicine, Jeju National University, College of Medicine, Jeju
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University, College of Medicine, Jeju.
| |
Collapse
|