1
|
Hou Y, Guo X, Ran J, Lu X, Xie C. Conductive polyphenol microneedles coupled with electroacupuncture to accelerate wound healing and alleviate depressive-like behaviors in diabetes. Bioact Mater 2025; 44:516-530. [PMID: 39584064 PMCID: PMC11583732 DOI: 10.1016/j.bioactmat.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Inflammation and depression are serious complications of diabetes that interact to form a feedback loop and may hinder diabetic wound healing. They share a common pathophysiological basis of abnormal interactions between diabetic wounds and the brain. Here, we propose a strategy combining electroacupuncture (EA) stimulation of the Dazhui acupoint (GV14) with polyphenol-mediated conductive hydrogel microneedles to promote diabetic wound healing and alleviate depression through local wound-brain interactions. The conductive microneedles comprised methacrylated gelatin, dopamine (DA), DA-modified poly(3,4-ethylenedioxythiophene), and Lycium barbarum polysaccharide. EA at GV14 activated the vagus-adrenal axis to inhibit systemic inflammation while DA coupled electrical signals for long-term inhibition of local wound inflammation. EA at GV14 was also found to elevate 5-hydroxytryptamine levels in rats with diabetic wounds, consequently mitigating depressive-like behaviors. Additionally, the polyphenol-mediated conductive hydrogel microneedles, and coupled with EA stimulation promoted healing of wound tissue and peripheral nerves. This strategy regulated both local and systemic inflammation while alleviating depressive-like behaviors in diabetic rats, providing a new clinical perspective for the treatment of diabetes-related and emotional disorders.
Collapse
Affiliation(s)
- Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiaochuan Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Jinhui Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
2
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Houghton V, Eiwegger T, Florsheim EB, Knibb RC, Thuret S, Santos AF. From bite to brain: Neuro-immune interactions in food allergy. Allergy 2024; 79:3326-3340. [PMID: 39462229 DOI: 10.1111/all.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergies are reported to affect around 3.5% of children and 2.4% of adults, with symptoms varying in range and severity. While being the gold standard for diagnosis, oral food challenges are burdensome, and diagnostic tools based on specific IgE can be flawed. Furthering our understanding of the mechanisms behind food allergy onset, severity and persistence could help reveal immune profiles associated with the disease, to ultimately aid in diagnosis. Alterations to cytokine levels and immune cell ratios have been identified, though further research is needed to fully capture the heterogenous nature of food allergy. Moreover, the existence of such immune alterations also raises the question of potential wider systemic effects. For example, recent research has emphasised the existence and impact of neuro-immune interactions and implicated behavioural and neurological changes associated with food allergy. This review will provide an overview of such food allergy-driven neuro-immune interactions, with the aim of emphasising the importance of furthering our understanding of the immune mechanisms underlying IgE-mediated food allergy.
Collapse
Affiliation(s)
- Vikki Houghton
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas Eiwegger
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Esther Borges Florsheim
- Center for Health Through Microbiomes, Biodesign Institute Arizona State University Tempe, Arizona, USA
- School of Life Sciences, Arizona State University Tempe, Arizona, USA
| | - Rebecca C Knibb
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Cepeda Y, Elizondo-Vega R, Garrido C, Tobar C, Araneda M, Oliveros P, Ordenes P, Carril C, Vidal PM, Luz-Crawford P, García-Robles MA, Oyarce K. Regulatory T cells administration reduces anxiety-like behavior in mice submitted to chronic restraint stress. Front Cell Neurosci 2024; 18:1406832. [PMID: 39206016 PMCID: PMC11349540 DOI: 10.3389/fncel.2024.1406832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Major depression disorder (MDD) and anxiety are common mental disorders that significantly affect the quality of life of those who suffer from them, altering the person's normal functioning. From the biological perspective, the most classical hypothesis explaining their occurrence relies on neurotransmission and hippocampal excitability alterations. However, around 30% of MDD patients do not respond to medication targeting these processes. Over the last decade, the involvement of inflammatory responses in depression and anxiety pathogenesis has been strongly acknowledged, opening the possibility of tackling these disorders from an immunological point of view. In this context, regulatory T cells (Treg cells), which naturally maintain immune homeostasis by suppressing inflammation could be promising candidates for their therapeutic use in mental disorders. Methods To test this hypothesis, C57BL/6 adult male mice were submitted to classical stress protocols to induce depressive and anxiety-like behavior; chronic restriction stress (CRS), and chronic unpredictable stress (CUS). Some of the stressed mice received a single adoptive transfer of Treg cells during stress protocols. Mouse behavior was analyzed through the open field (OFT) and forced swim test (FST). Blood and spleen samples were collected for T cell analysis using cell cytometry, while brains were collected to study changes in microglia by immunohistochemistry. Results Mice submitted to CRS and CUS develop anxiety and depressive-like behavior, and only CRS mice exhibit lower frequencies of circulating Treg cells. Adoptive transfer of Treg cells decreased anxiety-like behavior in the OFT only in CRS model, but not depressive behavior in FST in neither of the two models. In CRS mice, Treg cells administration lowered the number of microglia in the hippocampus, which increased due this stress paradigm, and restored its arborization. However, in CUS mice, Treg cells administration increased microglia number with no significant effect on their arborization. Conclusion Our results for effector CD4+ T cells in the spleen and microglia number and morphology in the hippocampus add new evidence in favor of the participation of inflammatory responses in the development of depressive and anxiety-like behavior and suggest that the modulation of key immune cells such as Treg cells, could have beneficial effects on these disorders.
Collapse
Affiliation(s)
- Yamila Cepeda
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Camila Garrido
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Catalina Tobar
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Matías Araneda
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Patricia Oliveros
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Patricio Ordenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Claudio Carril
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Pía M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Patricia Luz-Crawford
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María. A. García-Robles
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| |
Collapse
|
5
|
Dai B, Li T, Cao J, Zhao X, Jiang Y, Shi L, Wei J. CD4 + T-cell subsets are associated with chronic stress effects in newly diagnosed anxiety disorders. Neurobiol Stress 2024; 31:100661. [PMID: 39070284 PMCID: PMC11279324 DOI: 10.1016/j.ynstr.2024.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Aim Prior research has indicated a connection between CD4+ T cells and the development of anxiety, but the specific CD4+ T cell subsets linked to anxiety disorders remain uncertain. Our study seeks to investigate the relationship between distinct CD4+ T cell subsets and anxiety, as well as to explore whether CD4+ T cell subsets mediate the effect of chronic psychological stress on anxiety. Methods 56 eligible matched participants were recruited in Peking Union Medical College Hospital. The diagnosis was made based on DSM-5 diagnostic criteria. The severity of anxiety and depression symptoms was assessed using the Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale, respectively. The Life Events Scale (LES) evaluated the chronic stress level. CD4+ T cell subsets were characterized using multiparametric flow cytometry. To assess the impact of CD4+ T cells on the effect of chronic psychological stress on anxiety, Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis was employed. Results We discovered fifteen notably distinct CD4+ T-cell subsets in anxiety disorder patients compared to healthy controls. Multiple linear regression analysis unveiled an association between anxiety severity and CD27+CD45RA- Th cells, CD27+CD28+ Tregs, and the total Life Events Scale (LES) score. The PLS-SEM analysis demonstrated that CD4+ T cell subsets and LES could explain 80.2% of the variance in anxiety. Furthermore, it was observed that CD27+CD28+ Th/Treg cells acted as inverse mediators of the effects of LES on anxiety (P = 0.031). Conclusions Drug naïve anxiety disorder patients exhibited significant alterations in numerous CD4+ T-cell subsets. Specifically, the memory subset of CD27+CD45RA- Th cells and the naïve subset of CD27+CD28+ Treg cells were found to be independent factors associated with the severity of anxiety. Additionally, the CD27+CD28+ Th and Treg cell subsets played a significant mediating role in the influence of long-term psychological stress on anxiety.
Collapse
Affiliation(s)
- Bindong Dai
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Tao Li
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Jinya Cao
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Xiaohui Zhao
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Yinan Jiang
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Lili Shi
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Jing Wei
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| |
Collapse
|
6
|
Yang J, Zhang S, Wu Q, Chen P, Dai Y, Long J, Wu Y, Lin Y. T cell-mediated skin-brain axis: Bridging the gap between psoriasis and psychiatric comorbidities. J Autoimmun 2024; 144:103176. [PMID: 38364575 DOI: 10.1016/j.jaut.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.
Collapse
Affiliation(s)
- Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qixuan Wu
- Mental Health Services, Blacktown Hospital, Blacktow, NSW, 2148, Australia
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|