1
|
Natural Receptor- and Ligand-Based Chimeric Antigen Receptors: Strategies Using Natural Ligands and Receptors for Targeted Cell Killing. Cells 2021; 11:cells11010021. [PMID: 35011583 PMCID: PMC8750724 DOI: 10.3390/cells11010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/29/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been widely successful in the treatment of B-cell malignancies, including B-cell lymphoma, mantle cell lymphoma, and multiple myeloma; and three generations of CAR designs have led to effective FDA approved therapeutics. Traditionally, CAR antigen specificity is derived from a monoclonal antibody where the variable heavy (VH) and variable light (VL) chains are connected by a peptide linker to form a single-chain variable fragment (scFv). While this provides a level of antigen specificity parallel to that of an antibody and has shown great success in the clinic, this design is not universally successful. For instance, issues of stability, immunogenicity, and antigen escape hinder the translational application of some CARs. As an alternative, natural receptor- or ligand-based designs may prove advantageous in some circumstances compared to scFv-based designs. Herein, the advantages and disadvantages of scFv-based and natural receptor- or ligand-based CAR designs are discussed. In addition, several translational aspects of natural receptor- and ligand-based CAR approaches that are being investigated in preclinical and clinical studies will be examined.
Collapse
|
2
|
Yuan Q, Liang Q, Sun Z, Yuan X, Hou W, Wang Y, Wang H, Yu M. Development of bispecific anti-c-Met/PD-1 diabodies for the treatment of solid tumors and the effect of c-Met binding affinity on efficacy. Oncoimmunology 2021; 10:1914954. [PMID: 34350059 PMCID: PMC8296967 DOI: 10.1080/2162402x.2021.1914954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although the blockade of the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has become a promising treatment strategy for several types of cancers, the constitutive activation of c-Met in tumors may cause a low overall response rate to PD-1 inhibitors. Increasing evidence indicates that the dual inhibition of c-Met and PD-1 could improve the efficacy of anti-PD-1/PD-L1 monoclonal antibodies for tumor immunotherapy. In this study, we developed two bispecific single-chain diabodies targeting c-Met and PD-1 for the treatment of solid tumors based on protein homology modeling, and we identified that the binding affinity of diabody-mp to c-Met was 50-folds higher than that of diabody-pm. The results of in vitro studies revealed that both diabodies suppressed HGF-induced proliferation, migration, and invasion of tumor cells, inhibiting the activation of c-Met signaling by antagonizing HGF binding to c-Met. Moreover, they promoted T cell activation by blocking the PD-1 pathway, mediating tumor cellular cytotoxicity through T cell engagement. In vivo studies with mice models demonstrated that diabody-mp exhibited higher therapeutic efficacy than other structural antibodies, greatly enhancing the survival of c-Met-positive tumor-bearing mice compared to single or combined c-Met and PD-1 blockade therapy. Furthermore, diabody-mp, which had a higher c-Met binding affinity, showed better anti-tumoral activity than diabody-pm, which had a lower c-Met binding affinity. In conclusion, bispecific anti-PD-1/c-Met diabody-mp, with high c-Met-associated affinity, inhibited tumor growth by activating T cells, suggesting its therapeutic potential for c-Met-positive solid tumors.
Collapse
Affiliation(s)
- Qingyun Yuan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Qiaoyan Liang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Zujun Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingxing Yuan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Weihua Hou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Yuxiong Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medicine Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Asano R, Hosokawa K, Taki S, Konno S, Shimomura I, Ogata H, Okada M, Arai K, Onitsuka M, Omasa T, Nakanishi T, Umetsu M, Kumagai I. Build-up functionalization of anti-EGFR × anti-CD3 bispecific diabodies by integrating high-affinity mutants and functional molecular formats. Sci Rep 2020; 10:4913. [PMID: 32188928 PMCID: PMC7080790 DOI: 10.1038/s41598-020-61840-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Designing non-natural antibody formats is a practical method for developing highly functional next-generation antibody drugs, particularly for improving the therapeutic efficacy of cancer treatments. One approach is constructing bispecific antibodies (bsAbs). We previously reported a functional humanized bispecific diabody (bsDb) that targeted epidermal growth factor receptor and CD3 (hEx3-Db). We enhanced its cytotoxicity by constructing an Fc fusion protein and rearranging order of the V domain. In this study, we created an additional functional bsAb, by integrating the molecular formats of bsAb and high-affinity mutants previously isolated by phage display in the form of Fv. Introducing the high-affinity mutations into bsDbs successfully increased their affinities and enhanced their cytotoxicity in vitro and in vivo. However, there were some limitations to affinity maturation of bsDb by integrating high-affinity Fv mutants, particularly in Fc-fused bsDb with intrinsic high affinity, because of their bivalency. The tetramers fractionated from the bsDb mutant exhibited the highest in vitro growth inhibition among the small bsAbs and was comparable to the in vivo anti-tumor effects of Fc-fused bsDbs. This molecule shows cost-efficient bacterial production and high therapeutic potential.
Collapse
Affiliation(s)
- Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan. .,Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| | - Katsuhiro Hosokawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Shintaro Taki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Shota Konno
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Ippei Shimomura
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hiromi Ogata
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Mai Okada
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kyoko Arai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Masayoshi Onitsuka
- Institute of Technology and Science, Tokushima University, Tokushima, 770-8506, Japan
| | - Takeshi Omasa
- Institute of Technology and Science, Tokushima University, Tokushima, 770-8506, Japan
| | - Takeshi Nakanishi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
4
|
Duan S, Jia Y, Xie D, Xiao S, Zhou C, Zeng F. Selection of novel human scFvs against cancer antigen IL1RAP by phage and yeast surface display technology. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1738957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Shixin Duan
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Yanrong Jia
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Shenglin Xiao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Cheng Zhou
- Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| |
Collapse
|
5
|
Quintarelli C, Orlando D, Boffa I, Guercio M, Polito VA, Petretto A, Lavarello C, Sinibaldi M, Weber G, Del Bufalo F, Giorda E, Scarsella M, Petrini S, Pagliara D, Locatelli F, De Angelis B, Caruana I. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology 2018; 7:e1433518. [PMID: 29872565 PMCID: PMC5980417 DOI: 10.1080/2162402x.2018.1433518] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been shown to be dramatically effective in the treatment of B-cell malignancies. However, there are still substantial obstacles to overcome, before similar responses can be achieved in patients with solid tumors. We evaluated both in vitro and in a preclinical murine model the efficacy of different 2nd and 3rd generation CAR constructs targeting GD2, a disial-ganglioside expressed on the surface of neuroblastoma (NB) tumor cells. In order to address potential safety concerns regarding clinical application, an inducible safety switch, namely inducible Caspase-9 (iC9), was also included in the vector constructs. Our data indicate that a 3rd generation CAR incorporating CD28.4-1BB costimulatory domains is associated with improved anti-tumor efficacy as compared with a CAR incorporating the combination of CD28.OX40 domains. We demonstrate that the choice of 4-1BB signaling results into significant amelioration of several CAR T-cell characteristics, including: 1) T-cell exhaustion, 2) basal T-cell activation, 3) in vivo tumor control and 4) T-cell persistence. The fine-tuning of T-cell culture conditions obtained using IL7 and IL15 was found to be synergic with the CAR.GD2 design in increasing the anti-tumor activity of CAR T cells. We also demonstrate that activation of the suicide gene iC9, included in our construct without significantly impairing neither CAR expression nor anti-tumor activity, leads to a prompt induction of apoptosis of GD2.CAR T cells. Altogether, these findings are instrumental in optimizing the function of CAR T-cell products to be employed in the treatment of children with NB.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of "Medicina Clinica e Chirurgia", University of Naples Federico II, Naples, Italy
| | - Domenico Orlando
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Iolanda Boffa
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marika Guercio
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Vinicia Assunta Polito
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Matilde Sinibaldi
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gerrit Weber
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ezio Giorda
- Core Facilities, IRCCS Ospedale Pediatrico Bambino Gesù, Rome Italy
| | - Marco Scarsella
- Core Facilities, IRCCS Ospedale Pediatrico Bambino Gesù, Rome Italy
| | - Stefania Petrini
- Core Facilities, IRCCS Ospedale Pediatrico Bambino Gesù, Rome Italy
| | - Daria Pagliara
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
6
|
Abstract
Development of chimeric antigen receptor (CAR) T cells have led to remarkable successes in the treatment of B-cell malignancies with anti-CD19 CAR. Here we discuss the development of novel antigen receptors for use in solid malignancies with respect to target antigens, receptor design, and T cell manipulations.
Collapse
Affiliation(s)
- David Chen
- Surgery Branch, National Cancer Institute National Institutes of Health, Bethesda, Md.
| | - James Yang
- Surgery Branch, National Cancer Institute National Institutes of Health, Bethesda, Md
| |
Collapse
|
7
|
Klement M, Zheng J, Liu C, Tan HL, Wong VVT, Choo ABH, Lee DY, Ow DSW. Antibody engineering of a cytotoxic monoclonal antibody 84 against human embryonic stem cells: Investigating the effects of multivalency on cytotoxicity. J Biotechnol 2017; 243:29-37. [PMID: 28042013 DOI: 10.1016/j.jbiotec.2016.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023]
Abstract
Antibody fragments have shown targeted specificity to their antigens, but only modest tissue retention times in vivo and in vitro. Multimerization has been used as a protein engineering tool to increase the number of binding units and thereby enhance the efficacy and retention time of antibody fragments. In this work, we explored the effects of valency using a series of self-assembling polypeptides based on the GCN4 leucine zipper multimerization domain fused to a single-chain variable fragment via an antibody upper hinge sequence. Four engineered antibody fragments with a valency from one to four antigen-binding units of a cytotoxic monoclonal antibody 84 against human embryonic stem cells (hESC) were constructed. We hypothesized that higher cytotoxicity would be observed for fragments with increased valency. Flow cytometry analysis revealed that the trimeric and tetrameric engineered antibody fragments resulted in the highest degree of cytotoxicity to the undifferentiated hESC, while the engineered antibody fragments were observed to have improved tissue penetration into cell clusters. Thus, a trade off was made for the trimeric versus tetrameric fragment due to improved tissue penetration. These results have direct implications for antibody-mediated removal of undifferentiated hESC during regenerative medicine and cell therapy.
Collapse
Affiliation(s)
- Maximilian Klement
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Jiyun Zheng
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, #05-01, 117456, Singapore
| | - Chengcheng Liu
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Heng-Liang Tan
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Victor Vai Tak Wong
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Andre Boon-Hwa Choo
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore.
| | - Dave Siak-Wei Ow
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore.
| |
Collapse
|
8
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
9
|
Asano R, Koyama N, Hagiwara Y, Masakari Y, Orimo R, Arai K, Ogata H, Furumoto S, Umetsu M, Kumagai I. Anti-EGFR scFv tetramer (tetrabody) with a stable monodisperse structure, strong anticancer effect, and a long in vivo half-life. FEBS Open Bio 2016; 6:594-602. [PMID: 27419062 PMCID: PMC4887975 DOI: 10.1002/2211-5463.12073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/07/2022] Open
Abstract
The development of single-chain variable fragments (scFvs) as therapeutic agents has the potential to reduce the high cost of antibody production, but the development process often impairs scFv functions such as binding affinity and pharmacokinetics. Multimerization is one strategy for recovering or enhancing these lost functions. Previously, we constructed several antiepidermal growth factor receptor (EGFR) scFv multimers by modifying linker length and domain order. Antitumor effects comparable with those of the currently approved anti-EGFR therapeutic antibodies were observed for scFv trimers. In the present study, we fractionated an anti-EGFR scFv tetramer from the intracellular soluble fraction of an Escherichia coli transformant. Compared with the trimer, the tetramer showed higher affinity, greater cancer cell growth inhibition, and prolonged blood retention time. Furthermore, the tetramer did not dissociate into the trimer or other smaller species during long-term storage (up to 33 weeks). Thus, our developed scFv tetramer is an attractive candidate next-generation anti-EGFR therapeutic antibody that can be produced via a low-cost bacterial expression system.
Collapse
Affiliation(s)
- Ryutaro Asano
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan; Present address: Department of Biotechnology and Life Science Graduate School of Engineering Tokyo University of Agriculture and Technology Tokyo 184-8588 Japan
| | - Noriaki Koyama
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Yasuyo Hagiwara
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Yosuke Masakari
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Ryota Orimo
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Kyoko Arai
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Hiromi Ogata
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Shozo Furumoto
- Department of Radiopharmaceutical Chemistry Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Sendai Japan
| |
Collapse
|
10
|
Min WK, Na KI, Yoon JH, Heo YJ, Lee D, Kim SG, Seo JH. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1. Food Chem 2016; 209:312-7. [PMID: 27173568 DOI: 10.1016/j.foodchem.2016.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022]
Abstract
Aflatoxin B1 (AFB1) produced in Aspergillus flavus is a major hepatocarcinogen found in foods and feed. For effective immunological detection of AFB1 at low concentrations, the development of high affinity antibody for AFB1 is required. Previously, an affinity-maturated single-chain variable fragment containing 6 mutations (scFv-M37) was isolated from an artificial mutagenic library, which showed a 9-fold higher affinity than its wild type scFv. In this study, the effect of the 6 mutated residues on the affinity improvement was characterized using surface plasmon resonance analysis, which identified a deleterious mutation (VH-A110T) located on a framework region of the scFv-M37. The back mutation of VH-A110T resulted in a 3.2-fold affinity improvement, which was attributed to decrease of dissociation rate constant (kd) in interaction between AFB1 and the back mutant scFv. The biophysical analyses using circular dichroism and gel filtration revealed that the back mutation of VH-A110T caused a subtle conformational change of the scFv toward tighter binding to AFB1.
Collapse
Affiliation(s)
- Won-Ki Min
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kang-In Na
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jung-Hyun Yoon
- Department of Biomedical Science, Youngdong University, Chungbuk 370-701, Republic of Korea
| | - Yoon-Jee Heo
- Department of Biomedical Science, Youngdong University, Chungbuk 370-701, Republic of Korea
| | - Daesang Lee
- The 5th R&D Institute-3, Agency for Defense Development, Daejeon 305-152, Republic of Korea
| | - Sung-Gun Kim
- Department of Biomedical Science, Youngdong University, Chungbuk 370-701, Republic of Korea.
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
11
|
Wartha F, Horn AHC, Meiselbach H, Sticht H. Molecular Dynamics Simulations of HIV-1 Protease Suggest Different Mechanisms Contributing to Drug Resistance. J Chem Theory Comput 2015; 1:315-24. [PMID: 26641303 DOI: 10.1021/ct049869o] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major problem in the antiretroviral treatment of HIV-infections with protease-inhibitors is the emergence of resistance, resulting from the occurrence of distinct mutations within the protease molecule. In the present work molecular dynamics simulations of an active-site mutation (D30N) and a nonactive-site mutation (N88S) of HIV-1 protease that both directly confer resistance to the protease inhibitor Nelfinavir but not to Amprenavir were performed and compared to wild-type HIV-protease. A decreased interaction energy between protease and Nelfinavir was observed for the D30N mutant giving a plausible explanation for resistance, while the N88S mutation did not significantly affect the interaction energies in the bound form. Structural analysis including both ligand-bound and unliganded HIV-1 proteases revealed that the free N88S mutant protease shows significant differences in its hydrogen bonding pattern compared to free or Nelfinavir-bound wild-type protease. In particular, Asp30 forms more frequently a hydrogen bond with Ser88 in the unbound N88S mutant thus interfering with the Asp30-Nelfinavir interaction. These findings suggest that different molecular mechanisms contribute to resistance in active-site and nonactive-site mutants and propose a mechanism for the N88S mutant that is based on a shift of the conformational equilibrium of the unbound protease.
Collapse
Affiliation(s)
- Florian Wartha
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Anselm H C Horn
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Heike Meiselbach
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Heinrich Sticht
- Abteilung Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
12
|
Chimeric Antigen Receptors for Cancer: Progress and Challenges. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21:581-90. [PMID: 25939063 PMCID: PMC4458184 DOI: 10.1038/nm.3838] [Citation(s) in RCA: 1234] [Impact Index Per Article: 137.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic antitumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We show that tonic CAR CD3-ζ phosphorylation, triggered by antigen-independent clustering of CAR single-chain variable fragments, can induce early exhaustion of CAR T cells that limits antitumor efficacy. Such activation is present to varying degrees in all CARs studied, except the highly effective CD19 CAR. We further determine that CD28 costimulation augments, whereas 4-1BB costimulation reduces, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the antitumor effects of CD19 CARs and for the observations that CD19 CAR T cells incorporating the 4-1BB costimulatory domain are more persistent than those incorporating CD28 in clinical trials.
Collapse
Affiliation(s)
- Adrienne H Long
- 1] Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Waleed M Haso
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsey M Wanhainen
- 1] Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biology, Colgate University, Hamilton, New York, USA
| | - Meera Murgai
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Ingaramo
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Jillian P Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alec J Walker
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - M Eric Kohler
- 1] Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Pediatrics, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Vikas R Venkateshwara
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rimas J Orentas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Crystal L Mackall
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Peterson EC, Celikel R, Gokulan K, Varughese KI. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites. PLoS One 2013; 8:e82690. [PMID: 24349338 PMCID: PMC3857803 DOI: 10.1371/journal.pone.0082690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022] Open
Abstract
Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.
Collapse
Affiliation(s)
- Eric C Peterson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Reha Celikel
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kuppan Gokulan
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kottayil I Varughese
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
15
|
Cona MM, Wang H, Li J, Feng Y, Chen F, de Witte P, Verbruggen A, Ni Y. Continuing pursuit for ideal systemic anticancer radiotherapeutics. Invest New Drugs 2011; 30:2050-65. [PMID: 22006160 DOI: 10.1007/s10637-011-9758-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 10/04/2011] [Indexed: 12/22/2022]
Abstract
Cancer is one of the major causes of death for non-transmissible chronic diseases worldwide. Conventional treatments including surgery, chemotherapy and external beam radiotherapy are generally far from curative. Complementary therapies are attempted for achieving more successful treatment response. Systemic targeted radiotherapy (STR) is a radiotherapeutic modality based on systemic administration of radioactive agents for selectively delivering high doses of energy to destroy cancer cells. For this purpose, diverse tumour-target specific agents including monoclonal antibodies (MoAb), MoAb fragments and peptides have been tested and some of them have already got FDA approval for clinical use. However, MoAbs and their tailored analogues have shown non-homogeneous tumour distribution, limited diffusion, insufficient intratumoral accumulation and retention, unwanted uptake in normal tissues and scarcity of identified cancer antigens for generating new MoAbs. Similarly, peptides have also exhibited retention in normal organs, lacks of favourable membrane permeability or drug cell internalization and short-term residence in cancer cells. Recently, a new category of target-specific agent with strong affinity for necrosis has emerged as an excellent option for developing targeted radiotherapeutic agents to be used after necrosis-inducing treatments (NITs). The combination of their high, specific and long-term accumulation and retention at necrotic sites with the crossfire effect of ionizing particle-emitters allows irradiating adjacent residual viable tumour cells during a prolonged period of time. It may considerably enhance the therapeutic response and open a new horizon for improved cancer treatability or curability.
Collapse
Affiliation(s)
- Marlein Miranda Cona
- Radiology Section, Department of Medical Diagnostic Sciences, Biomedical Sciences Group, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nuttall SD, Wilkins ML, Streltsov VA, Pontes-Braz L, Dolezal O, Tran H, Liu CQ. Isolation, kinetic analysis, and structural characterization of an antibody targeting the Bacillus anthracis major spore surface protein BclA. Proteins 2011; 79:1306-17. [PMID: 21322055 DOI: 10.1002/prot.22971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/10/2010] [Indexed: 11/11/2022]
Abstract
One method of laboratory- or field-based testing for anthrax is detection of Bacillus anthracis spores by high-affinity, high specificity binding reagents. From a pool of monoclonal antibodies, we selected one such candidate (A4D11) with high affinity for tBclA, a truncated version of the B. anthracis exosporium protein BclA. Kinetic analysis utilising both standard and kinetic titration on a Biacore biosensor indicated antibody affinities in the 300 pM range for recombinant tBclA, and the A4D11 antibody was also re-formatted into scFv configuration with no loss of affinity. However, assays against B. anthracis and related Bacilli species showed limited binding of intact spores as well as significant cross-reactivity between species. These results were rationalized by determination of the three-dimensional crystallographic structure of the scFv-tBclA complex. A4D11 binds the side of the tBclA trimer, contacting a face of the antigen normally packed against adjacent trimers within the exosporium structure; this inter-spore interface is highly conserved between Bacilli species. Our results indicate the difficulty of generating a high-affinity antibody to differentiate between the highly conserved spore structures of closely related species, but suggest the possibility of future structure-based antibody design for this difficult target.
Collapse
Affiliation(s)
- Stewart D Nuttall
- CSIRO Division of Materials Science and Engineering, Parkville, Victoria, 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao JX, Yang L, Gu ZN, Chen HQ, Tian FW, Chen YQ, Zhang H, Chen W. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. Int J Mol Sci 2010; 12:1-11. [PMID: 21339972 PMCID: PMC3039938 DOI: 10.3390/ijms12010001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/08/2010] [Accepted: 12/16/2010] [Indexed: 12/16/2022] Open
Abstract
The interdomain instability of single-chain fragment variable (scFv) might result in intermolecular aggregation and loss of function. In the present study, we stabilized H4-an anti-aflatoxin B(1) (AFB(1)) scFv-with an interdomain disulfide bond and studied the effect of the disulfide bond on antibody affinity. With homology modeling and molecular docking, we designed a scFv containing an interdomain disulfide bond between the residues H44 and L100. The stability of scFv (H4) increased from a GdnHCl(50) of 2.4 M to 4.2 M after addition of the H44-L100 disulfide bond. Size exclusion chromatography revealed that the scFv (H44-L100) mutant existed primarily as a monomer, and no aggregates were detected. An affinity assay indicated that scFv (H4) and the scFv (H44-L100) mutant had similar IC(50) values and affinity to AFB(1). Our results indicate that interdomain disulfide bonds could stabilize scFv without affecting affinity.
Collapse
Affiliation(s)
- Jian-Xin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mails: (J.-X.Z.); (L.Y.); (H.-Q.C.); (F.-W.T.)
| | - Lian Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mails: (J.-X.Z.); (L.Y.); (H.-Q.C.); (F.-W.T.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mail: (H.Z.)
| | - Zhen-Nan Gu
- Department of Cancer Biology, School of Medicine, Wake Forest University, Winston Salem, NC 27109, USA; E-Mails: (Z.-N.G.); (Y.-Q.C.)
| | - Hai-Qin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mails: (J.-X.Z.); (L.Y.); (H.-Q.C.); (F.-W.T.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mail: (H.Z.)
| | - Feng-Wei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mails: (J.-X.Z.); (L.Y.); (H.-Q.C.); (F.-W.T.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mail: (H.Z.)
| | - Yong-Quan Chen
- Department of Cancer Biology, School of Medicine, Wake Forest University, Winston Salem, NC 27109, USA; E-Mails: (Z.-N.G.); (Y.-Q.C.)
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mail: (H.Z.)
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; E-Mails: (J.-X.Z.); (L.Y.); (H.-Q.C.); (F.-W.T.)
| |
Collapse
|
18
|
Asano R, Ikoma K, Sone Y, Kawaguchi H, Taki S, Hayashi H, Nakanishi T, Umetsu M, Katayose Y, Unno M, Kudo T, Kumagai I. Highly enhanced cytotoxicity of a dimeric bispecific diabody, the hEx3 tetrabody. J Biol Chem 2010; 285:20844-9. [PMID: 20444691 DOI: 10.1074/jbc.m110.120444] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the utility for cancer immunotherapy of a humanized bispecific diabody (hEx3) that targets epidermal growth factor receptor and CD3. Here, we used dynamic and static light scattering measurements to show that the multimer fraction observed in hEx3 in solution is a monodisperse tetramer. The multimerization into tetramers increased the inhibition of cancer cell growth by the hEx3 diabody. Furthermore, 1:2 stoichiometric binding for both antigens was observed in a thermodynamic analysis, indicating that the tetramer has bivalent binding activity for each target, and the structure may be in a circular configuration, as is the case for the single-chain Fv tetrabody. In addition to enhanced cytotoxicity, the functional affinity and stability of the hEx3 tetrabody were superior to those of the hEx3 diabody. The increase in molecular weight is also expected to improve the pharmacokinetics of the bispecific diabody, making the hEx3 tetrabody attractive as a therapeutic antibody fragment for cancer immunotherapy.
Collapse
Affiliation(s)
- Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
20
|
Hosse RJ, Tay L, Hattarki MK, Pontes-Braz L, Pearce LA, Nuttall SD, Dolezal O. Kinetic screening of antibody–Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors. Anal Biochem 2009; 385:346-57. [DOI: 10.1016/j.ab.2008.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/07/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
21
|
Wang SH, Zhang JB, Zhang ZP, Zhou YF, Yang RF, Chen J, Guo YC, You F, Zhang XE. Construction of single chain variable fragment (ScFv) and BiscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal Chem 2007; 78:997-1004. [PMID: 16478089 DOI: 10.1021/ac0512352] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes an attempt for convenient and sensitive detection of Bacillus anthracis with single chain variable fragment (scFv)-based protein chip. Phage display technology was employed to generate scFv by using the protective antigen (PA) of B. anthracis for immunization. V(H) and V(L) genes of the scFv were amplified separately by reverse transcriptase-PCR from mRNA of immunized mice and then assembled into scFv gene with a linker DNA sequence. The scFv gene was inserted into a phagemid vector pCANTAB-5E and then transformed into Escherichia coli TG1 to yield recombinant phages after infection with helper phage M13KO7. After six rounds of panning with PA, the phage clones displaying scFv fragments of the antibody were selected by ELISA. One phage clone scFv-6w10 showing the strongest positive signal in ELISA was selected. To enhance the affinity of the scFv-6w10, a recombinant bivalent single-chain Fv antibody (biscFv-6w10) directed against PA was constructed and tested in functional assays. The affinity of the biscFv-6w10 was much higher than that of scFv-6w10 and reached 6.5 x 10(9) M(-1). An expression system was constructed for the production of E. coli alkaline phosphatase (EAP) labeled biscFv-6w10 (biscFv-6w10-EAP) in E. coli cells. The expressed fusion protein retained both antigen-specific binding and enzymatic activity and thus directly served as an enzyme-labeled antibody. Detections of PA and bacterial cells of B. anthracis using biscFv-6w10-EAP and Cy3-labeled biscFv-6w10 were performed on a protein chip. The fusion protein (biscFv-6w10-EAP) chip could detect 10 pg of PA and 500-1000 bacterial cells in approximately 2 h, while the sensitivity of Cy3-labeled protein chip reached 1 pg of PA and 50-100 cells within 2 h.
Collapse
Affiliation(s)
- Shi-Hua Wang
- Joint Research Group of Analytical Pathogen Microbiology, Wuhan Institute of Virology and Institute of Biophysics, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Therapeutic antibodies are well established as an important class of drugs in modern medicine. The exquisite specificity and affinity for a specific target offered by antibodies has also encouraged their development as delivery vehicles for agents such as radionuclides to target tissues, for radioimmunoimaging and radioimmunotherapy. Specifically, in nuclear medicine, radionuclide-conjugated antibody molecules make it possible to image diseased loci with greater sensitivity than other imaging modalities such as magnetic resonance imaging. Furthermore, two radionuclide-conjugated antibodies have recently been approved for the therapy of non-Hodgkin's lymphoma. However, optimal implementation of antibodies has been limited by the extended circulation persistence that is characteristic of native antibodies, which is responsible for increased background activity in radioimmunoimaging applications and dose-related normal organ toxicities in radioimmunotherapy. In this article the current status of radiolabelled intact antibodies is reviewed, focusing on strategies to improve their pharmacokinetic properties to suit a desired application. Examples from the literature that represent different approaches to accomplishing this task in terms of their successes as well as limitations, and perspectives for the future are discussed.
Collapse
Affiliation(s)
- Vania Kenanova
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 700 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|
23
|
Abstract
With 18 monoclonal antibody (mAb) products currently on the market and more than 100 in clinical trials, it is clear that engineered antibodies have come of age as biopharmaceuticals. In fact, by 2008, engineered antibodies are predicted to account for >30% of all revenues in the biotechnology market. Smaller recombinant antibody fragments (for example, classic monovalent antibody fragments (Fab, scFv)) and engineered variants (diabodies, triabodies, minibodies and single-domain antibodies) are now emerging as credible alternatives. These fragments retain the targeting specificity of whole mAbs but can be produced more economically and possess other unique and superior properties for a range of diagnostic and therapeutic applications. Antibody fragments have been forged into multivalent and multi-specific reagents, linked to therapeutic payloads (such as radionuclides, toxins, enzymes, liposomes and viruses) and engineered for enhanced therapeutic efficacy. Recently, single antibody domains have been engineered and selected as targeting reagents against hitherto immunosilent cavities in enzymes, receptors and infectious agents. Single-domain antibodies are anticipated to significantly expand the repertoire of antibody-based reagents against the vast range of novel biomarkers being discovered through proteomics. As this review aims to show, there is tremendous potential for all antibody fragments either as robust diagnostic reagents (for example in biosensors), or as nonimmunogenic in vivo biopharmaceuticals with superior biodistribution and blood clearance properties.
Collapse
Affiliation(s)
- Philipp Holliger
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
24
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|