1
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Wu J, Liang C, Li Y, Zeng Y, Sun X, Jiang P, Chen W, Xiong D, Jin J, Tang S. Engineering and application of LacI mutants with stringent expressions. Microb Biotechnol 2024; 17:e14427. [PMID: 38465475 PMCID: PMC10926051 DOI: 10.1111/1751-7915.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac /LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild-type LacI. An in-depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild-type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high-value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven-fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto-oligosaccharides (GOS).
Collapse
Affiliation(s)
- Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yufei Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yueting Zeng
- School of Life SciencesHebei UniversityBaodingChina
| | - Xu Sun
- Beijing Key Laboratory of Plant Resources Research and DevelopmentBeijing Technology and Business UniversityBeijingChina
| | - Peixia Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Dandan Xiong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Ming Jin
- Beijing Key Laboratory of Plant Resources Research and DevelopmentBeijing Technology and Business UniversityBeijingChina
| | - Shuang‐Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Tack DS, Tonner PD, Pressman A, Olson ND, Levy SF, Romantseva EF, Alperovich N, Vasilyeva O, Ross D. Precision engineering of biological function with large-scale measurements and machine learning. PLoS One 2023; 18:e0283548. [PMID: 36989327 PMCID: PMC10057847 DOI: 10.1371/journal.pone.0283548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
As synthetic biology expands and accelerates into real-world applications, methods for quantitatively and precisely engineering biological function become increasingly relevant. This is particularly true for applications that require programmed sensing to dynamically regulate gene expression in response to stimuli. However, few methods have been described that can engineer biological sensing with any level of quantitative precision. Here, we present two complementary methods for precision engineering of genetic sensors: in silico selection and machine-learning-enabled forward engineering. Both methods use a large-scale genotype-phenotype dataset to identify DNA sequences that encode sensors with quantitatively specified dose response. First, we show that in silico selection can be used to engineer sensors with a wide range of dose-response curves. To demonstrate in silico selection for precise, multi-objective engineering, we simultaneously tune a genetic sensor's sensitivity (EC50) and saturating output to meet quantitative specifications. In addition, we engineer sensors with inverted dose-response and specified EC50. Second, we demonstrate a machine-learning-enabled approach to predictively engineer genetic sensors with mutation combinations that are not present in the large-scale dataset. We show that the interpretable machine learning results can be combined with a biophysical model to engineer sensors with improved inverted dose-response curves.
Collapse
Affiliation(s)
- Drew S Tack
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Peter D Tonner
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Abe Pressman
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Nathan D Olson
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Sasha F Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States of America
- Joint Initiative for Metrology in Biology, Stanford, CA, United States of America
| | - Eugenia F Romantseva
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Nina Alperovich
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - Olga Vasilyeva
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| | - David Ross
- National Institute of Standards and Technology, Gaithersburg, MD, United States of America
| |
Collapse
|
4
|
Sun X, Li S, Zhang F, Sun T, Chen L, Zhang W. Development of a N-Acetylneuraminic Acid-Based Sensing and Responding Switch for Orthogonal Gene Regulation in Cyanobacterial Synechococcus Strains. ACS Synth Biol 2021; 10:1920-1930. [PMID: 34370452 DOI: 10.1021/acssynbio.1c00139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic biology have allowed photosynthetic cyanobacteria as promising "green cell factories" for sustainable production of biofuels and biochemicals. However, a limited of genetic switches developed in cyanobacteria restrict the complex and orthogonal metabolic regulation. In addition, suitable and controllable switches sensing and responding to specific inducers would allow for the separation of cellular growth and expression of exogenous genes or pathways that cause metabolic burden or toxicity. Here in this study, we developed a genetic switch repressed by NanR and induced by N-acetylneuraminic acid (Neu5Ac) in a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 along with its highly homologous strain S. elongatus PCC 7942. First, nanR from Escherichia coli and a previously optimized cognate promoter PJ23119H10 were introduced into Syn2973 to control the expression of the reporter gene lacZ encoding β-galactosidase, achieving induction with negligible leakage. Second, the switch was systemically optimized to reach ∼738-fold induction by fine-tuning the expression level of NanR and introducing additional transporter of Neu5Ac. Finally, the orthogonality between the NanR/Neu5Ac switch and theophylline-responsive riboregulator was investigated, achieving a coordinated regulation or binary regulation toward the target gene. Our work here provided a new switch for transcriptional control and orthogonal regulation strategies in cyanobacteria, which would promote the metabolic regulation for the cyanobacterial chassis in the future.
Collapse
Affiliation(s)
- Xuyang Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
5
|
Kim SG, Noh MH, Lim HG, Jang S, Jang S, Koffas MAG, Jung GY. Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS Microbiol Lett 2019; 365:5059574. [PMID: 30052915 DOI: 10.1093/femsle/fny187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Microbial conversion of biomass into value-added biochemicals is a highly sustainable process compared to petroleum-based production. In this regard, microorganisms have been engineered via simple overexpression or deletion of metabolic genes to facilitate the production. However, the producer microorganisms require complex regulatory circuits to maximize productivity and performance. To address this issue, diverse genetic circuits have been developed that allow cells to minimize their metabolic burden, overcome metabolic imbalances and respond to a dynamically changing environment. In this review, we briefly explain the basic strategy for constructing genetic circuits by assembling molecular parts such as input, operation and output modules. Next, we describe recent applications of the circuits in the metabolic engineering of microorganisms to improve biochemical production. Beyond those achievements, genetic circuits will facilitate more innovative approaches to future strain development through mining and engineering new genetic elements and improving the complexity of genetic circuit design.
Collapse
Affiliation(s)
- Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy 12180, USA
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
6
|
Jang S, Jang S, Noh MH, Lim HG, Jung GY. Novel Hybrid Input Part Using Riboswitch and Transcriptional Repressor for Signal Inverting Amplifier. ACS Synth Biol 2018; 7:2199-2204. [PMID: 30092633 DOI: 10.1021/acssynbio.8b00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genetic circuits are composed of input, logic, and output parts. Construction of complex circuits for practical applications requires numerous tunable genetic parts. However, the limited diversity and complicated tuning methods used for the input parts hinders the scalability of genetic circuits. Therefore, a new type of input part is required that responds to diverse signals and enables easy tuning. Here, we developed RNA-protein hybrid input parts that combine a riboswitch and orthogonal transcriptional repressors. The hybrid inputs successfully regulated the transcription of an output in response to the input signal detected by the riboswitch and resulted in signal inversion because of the expression of transcriptional repressors. Dose-response parameters including fold-change and half-maximal effective concentration were easily modulated and amplified simply by changing the promoter strength. Furthermore, the hybrid input detected both exogenous and endogenous signals, indicating potential applications in metabolite sensing. This hybrid input part could be highly extensible considering the rich variety of components.
Collapse
Affiliation(s)
- Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
7
|
Kandul N, Guo M, Hay BA. A positive readout single transcript reporter for site-specific mRNA cleavage. PeerJ 2017; 5:e3602. [PMID: 28740759 PMCID: PMC5522606 DOI: 10.7717/peerj.3602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 01/07/2023] Open
Abstract
Cleavage of mRNA molecules causes their rapid degradation, thereby playing an important role in regulation of gene expression and host genome defense from viruses and transposons in bacterial and eukaryotic cells. Current negative-readout, and repressor-based positive-readout reporters of mRNA degradation have limitations. Here we report the development of a single transcript that acts as a positive reporter of mRNA cleavage. We show that placement of bacterial CopT and CopA hairpins into the 5' UTR and 3' UTR of an mRNA results in inhibition of translation of the intervening coding sequence in Drosophila. An internal poly(A) tract inserted downstream of the coding sequence stabilizes transcripts cut within the 3' UTR. When these components are combined in a transcript in which targets sites for RNA cleavage are placed between the poly(A) tract and CopA, cleavage results in translational activation, providing a single transcript-based method of sensing mRNA cleavage with a positive readout.
Collapse
Affiliation(s)
- Nikolay Kandul
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Ming Guo
- Departments of Neurology and Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
8
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Hoffmann SA, Kruse SM, Arndt KM. Long-range transcriptional interference in E. coli used to construct a dual positive selection system for genetic switches. Nucleic Acids Res 2016; 44:e95. [PMID: 26932362 PMCID: PMC4889929 DOI: 10.1093/nar/gkw125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/21/2016] [Indexed: 11/29/2022] Open
Abstract
We have investigated transcriptional interference between convergent genes in E. coli and demonstrate substantial interference for inter-promoter distances of as far as 3 kb. Interference can be elicited by both strong σ70 dependent and T7 promoters. In the presented design, a strong promoter driving gene expression of a ‘forward’ gene interferes with the expression of a ‘reverse’ gene by a weak promoter. This arrangement allows inversely correlated gene expression without requiring further regulatory components. Thus, modulation of the activity of the strong promoter alters expression of both the forward and the reverse gene. We used this design to develop a dual selection system for conditional operator site binding, allowing positive selection both for binding and for non-binding to DNA. This study demonstrates the utility of this novel system using the Lac repressor as a model protein for conditional DNA binding, and spectinomycin and chloramphenicol resistance genes as positive selection markers in liquid culture. Randomized LacI libraries were created and subjected to subsequent dual selection, but mispairing IPTG and selection cues in respect to the wild-type LacI response, allowing the isolation of a LacI variant with a reversed IPTG response within three rounds of library generation and dual selection.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Sabrina M Kruse
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Katja M Arndt
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Camsund D, Lindblad P. Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2014; 2:40. [PMID: 25325057 PMCID: PMC4181335 DOI: 10.3389/fbioe.2014.00040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform photosynthesis and the ease with which they are genetically modified. In this review, we discuss transcriptional parts and promoters available for engineering cyanobacteria. First, we go through special cyanobacterial characteristics that may impact engineering, including the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing component characteristics that are desirable for synthetic biology approaches, including decoupling, modularity, and orthogonality. We then summarize and discuss the latest promoters for use in cyanobacteria regarding characteristics such as regulation, strength, and dynamic range and suggest potential uses. Finally, we provide an outlook and suggest future developments that would advance the field and accelerate the use of cyanobacteria for renewable biotechnology.
Collapse
Affiliation(s)
- Daniel Camsund
- Science for Life Laboratory, Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University , Uppsala , Sweden
| | - Peter Lindblad
- Science for Life Laboratory, Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University , Uppsala , Sweden
| |
Collapse
|
11
|
Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 2013; 4:246. [PMID: 24009604 PMCID: PMC3755261 DOI: 10.3389/fmicb.2013.00246] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022] Open
Abstract
Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as “chassis” strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a “green E. coli.” In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints.
Collapse
Affiliation(s)
- Bertram M Berla
- Department of Energy, Environmental, and Chemical Engineering, Washington University St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
12
|
Gatti-Lafranconi P, Dijkman WP, Devenish SRA, Hollfelder F. A single mutation in the core domain of the lac repressor reduces leakiness. Microb Cell Fact 2013; 12:67. [PMID: 23834731 PMCID: PMC3722110 DOI: 10.1186/1475-2859-12-67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/29/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements triggered by binding of the lactose isomer allolactose to the core domain of the repressor impede DNA binding and lift repression. In Nature, the ability to detect and respond to environmental conditions comes at the cost of the encoded enzymes being constitutively expressed at low levels. The readily-switched regulation provided by LacI has resulted in its widespread use for protein overexpression, and its applications in molecular biology represent early examples of synthetic biology. However, the leakiness of LacI that is essential for the natural function of the lac operon leads to an increased energetic burden, and potentially toxicity, in heterologous protein production. RESULTS Analysis of the features that confer promiscuity to the inducer-binding site of LacI identified tryptophan 220 as a target for saturation mutagenesis. We found that phenylalanine (similarly to tryptophan) affords a functional repressor that is still responsive to IPTG. Characterisation of the W220F mutant, LacIWF, by measuring the time dependence of GFP production at different IPTG concentrations and at various incubation temperatures showed a 10-fold reduction in leakiness and no decrease in GFP production. Cells harbouring a cytotoxic protein under regulatory control of LacIWF showed no decrease in viability in the early phases of cell growth. Changes in responsiveness to IPTG observed in vivo are supported by the thermal shift assay behaviour of purified LacIWF with IPTG and operator DNA. CONCLUSIONS In LacI, long-range communications are responsible for the transmission of the signal from the inducer binding site to the DNA binding domain and our results are consistent with the involvement of position 220 in modulating these. The mutation of this single tryptophan residue to phenylalanine generated an enhanced repressor with a 10-fold decrease in leakiness. By minimising the energetic burden and cytotoxicity caused by leakiness, LacIWF constitutes a useful switch for protein overproduction and synthetic biology.
Collapse
Affiliation(s)
| | - Willem P Dijkman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Sean RA Devenish
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
13
|
Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan GBV, Papachristodoulou A, Polizzi K. Tuning the dials of Synthetic Biology. MICROBIOLOGY-SGM 2013; 159:1236-1253. [PMID: 23704788 PMCID: PMC3749727 DOI: 10.1099/mic.0.067975-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others.
Collapse
Affiliation(s)
- James A J Arpino
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Edward J Hancock
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - James Anderson
- St John's College, St Giles, Oxford OX1 3JP, UK.,Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Guy-Bart V Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Karen Polizzi
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
14
|
Daber R, Sochor MA, Lewis M. Thermodynamic analysis of mutant lac repressors. J Mol Biol 2011; 409:76-87. [PMID: 21459098 DOI: 10.1016/j.jmb.2011.03.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
The lactose (lac) repressor is an allosteric protein that can respond to environmental changes. Mutations introduced into the DNA binding domain and the effector binding pocket affect the repressor's ability to respond to its environment. We have demonstrated how the observed phenotype is a consequence of altering the thermodynamic equilibrium constants. We discuss mutant repressors, which (1) show tighter repression; (2) induce with a previously noninducing species, orthonitrophenyl-β-D-galactoside; and (3) transform an inducible switch to one that is corepressed. The ability of point mutations to change multiple thermodynamic constants, and hence drastically alter the repressor's phenotype, shows how allosteric proteins can perform a wide array of similar yet distinct functions such as that exhibited in the Lac/Gal family of bacterial repressors.
Collapse
Affiliation(s)
- Robert Daber
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | | | |
Collapse
|
15
|
Hu Z, Zhao Z, Pan Y, Tu Y, Chen G. A powerful hybrid puc operon promoter tightly regulated by both IPTG and low oxygen level. BIOCHEMISTRY (MOSCOW) 2010; 75:519-2. [DOI: 10.1134/s0006297910040176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Huang HH, Camsund D, Lindblad P, Heidorn T. Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 2010; 38:2577-93. [PMID: 20236988 PMCID: PMC2860132 DOI: 10.1093/nar/gkq164] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cyanobacteria are suitable for sustainable, solar-powered biotechnological applications. Synthetic biology connects biology with computational design and an engineering perspective, but requires efficient tools and information about the function of biological parts and systems. To enable the development of cyanobacterial Synthetic Biology, several molecular tools were developed and characterized: (i) a broad-host-range BioBrick shuttle vector, pPMQAK1, was constructed and confirmed to replicate in Escherichia coli and three different cyanobacterial strains. (ii) The fluorescent proteins Cerulean, GFPmut3B and EYFP have been demonstrated to work as reporter proteins in cyanobacteria, in spite of the strong background of photosynthetic pigments. (iii) Several promoters, like PrnpB and variants of PrbcL, and a version of the promoter Ptrc with two operators for enhanced repression, were developed and characterized in Synechocystis sp. strain PCC6803. (iv) It was shown that a system for targeted protein degradation, which is needed to enable dynamic expression studies, is working in Synechocystis sp. strain PCC6803. The pPMQAK1 shuttle vector allows the use of the growing numbers of BioBrick parts in many prokaryotes, and the other tools herein implemented facilitate the development of new parts and systems in cyanobacteria.
Collapse
Affiliation(s)
- Hsin-Ho Huang
- Department of Photochemistry and Molecular Science, Angström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|
17
|
Daber R, Lewis M. Towards evolving a better repressor. Protein Eng Des Sel 2009; 22:673-83. [PMID: 19729374 PMCID: PMC2763795 DOI: 10.1093/protein/gzp051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/27/2009] [Accepted: 07/27/2009] [Indexed: 11/13/2022] Open
Abstract
Transcriptional regulation is an essential component of all metabolic pathways. At the most basic level, a protein binds to a particular DNA sequence (operator) on the genome and either positively or negatively alters the level of transcription. Together, the protein and its operator form an epigenetic switch that regulates gene expression. In an effort to produce a 'better' switch, we have discovered novel facets of the lac operon that are responsible for optimal functionality. We have uncovered a relationship between operator binding affinity and inducibility and demonstrated that the operator DNA is not a passive component of a genetic switch; it is responsible for establishing binding affinity, specificity as well as translational efficiency. In addition, an operator's directionality can indirectly affect gene expression. Unraveling the basic properties of this classical epigenetic switch demonstrates that multiple factors must be optimized in designing a better switch.
Collapse
Affiliation(s)
| | - Mitchell Lewis
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 37th and Hamilton Walk, Philadelphia, PA 19104-6059, USA
| |
Collapse
|