1
|
Hussack G, Rossotti MA, van Faassen H, Murase T, Eugenio L, Schrag JD, Ng KKS, Tanha J. Structure-guided design of a potent Clostridiodes difficile toxin A inhibitor. Front Microbiol 2023; 14:1110541. [PMID: 36778856 PMCID: PMC9909335 DOI: 10.3389/fmicb.2023.1110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.
Collapse
Affiliation(s)
- Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Martin A. Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Tomohiko Murase
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Luiz Eugenio
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joseph D. Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Kenneth K.-S. Ng
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada,*Correspondence: Kenneth K.-S. Ng,
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada,Jamshid Tanha,
| |
Collapse
|
2
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
3
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
5
|
Liu H, Schittny V, Nash MA. Removal of a Conserved Disulfide Bond Does Not Compromise Mechanical Stability of a VHH Antibody Complex. NANO LETTERS 2019; 19:5524-5529. [PMID: 31257893 PMCID: PMC6975629 DOI: 10.1021/acs.nanolett.9b02062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Indexed: 05/28/2023]
Abstract
Single-domain VHH antibodies are promising reagents for medical therapy. A conserved disulfide bond within the VHH framework region is known to be critical for thermal stability, however, no prior studies have investigated its influence on the stability of VHH antibody-antigen complexes under mechanical load. Here, we used single-molecule force spectroscopy to test the influence of a VHH domain's conserved disulfide bond on the mechanical strength of the interaction with its antigen mCherry. We found that although removal of the disulfide bond through cysteine-to-alanine mutagenesis significantly lowered VHH domain denaturation temperature, it had no significant impact on the mechanical strength of the VHH:mCherry interaction with complex rupture occurring at ∼60 pN at 103-104 pN/sec regardless of disulfide bond state. These results demonstrate that mechanostable binding interactions can be built on molecular scaffolds that may be thermodynamically compromised at equilibrium.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Valentin Schittny
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Kim DY, Kandalaft H, Hussack G, Raphael S, Ding W, Kelly JF, Henry KA, Tanha J. Evaluation of a noncanonical Cys40-Cys55 disulfide linkage for stabilization of single-domain antibodies. Protein Sci 2019; 28:881-888. [PMID: 30803088 DOI: 10.1002/pro.3595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
Abstract
Incorporation of noncanonical disulfide linkages into single-domain antibodies (sdAbs) has been shown to enhance thermostability and other properties. Here, we evaluated the effects of introducing a novel disulfide linkage formed between Cys residues at IMGT positions 40 and 55 on the melting temperatures (T m s), reversibility of thermal unfolding, solubility, and antigen-binding affinities of three types of sdAbs (VH H, VH , and VL domains). The Cys40-Cys55 disulfide linkage was tolerated by 9/9 VH Hs, 12/12 VH s, and 2/11 VL s tested and its formation was confirmed by mass spectrometry. Using circular dichroism, we found that the Cys40-Cys55 disulfide linkage increased sdAb T m by an average of 10.0°C (range: 0-21.8°C). However, enhanced thermostability came at the cost of a partial loss of refolding ability upon thermal denaturation as well as, for some sdAbs, significantly decreased solubility and antigen-binding affinity. Thus, Cys40/Cys55 can be added to the panel of known locations for introducing stabilizing noncanonical disulfide linkages into antibody variable domains, although its effects should be tested empirically for individual sdAbs.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Hiba Kandalaft
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Wen Ding
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
7
|
Kawade R, Akiba H, Entzminger K, Maruyama T, Okumura CJ, Tsumoto K. Roles of the disulfide bond between the variable and the constant domains of rabbit immunoglobulin kappa chains in thermal stability and affinity. Protein Eng Des Sel 2018; 31:243-247. [DOI: 10.1093/protein/gzy008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Raiji Kawade
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Pharmacokinetic Optimization, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, Japan
| | - Kevin Entzminger
- Abwiz Bio Inc., 9823 Pacific Heights Blvd Suite J, San Diego, CA, USA
| | - Toshiaki Maruyama
- Abwiz Bio Inc., 9823 Pacific Heights Blvd Suite J, San Diego, CA, USA
| | - C J Okumura
- Abwiz Bio Inc., 9823 Pacific Heights Blvd Suite J, San Diego, CA, USA
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Pharmacokinetic Optimization, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, Japan
- Medical Proteomics Laboratory, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
8
|
Schaefer JV, Sedlák E, Kast F, Nemergut M, Plückthun A. Modification of the kinetic stability of immunoglobulin G by solvent additives. MAbs 2018. [PMID: 29537925 DOI: 10.1080/19420862.2018.1450126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biophysical properties of antibody-based biopharmaceuticals are a critical part of their release criteria. In this context, finding the appropriate formulation is equally important as optimizing their intrinsic biophysical properties through protein engineering, and both are mutually dependent. Most previous studies have empirically tested the impact of additives on measures of colloidal stability, while mechanistic aspects have usually been limited to only the thermodynamic stability of the protein. Here we emphasize the kinetic impact of additives on the irreversible denaturation steps of immunoglobulins G (IgG) and their antigen-binding fragments (Fabs), as these are the key committed steps preceding aggregation, and thus especially informative in elucidating the molecular parameters of activity loss. We examined the effects of ten additives on the conformational kinetic stability by differential scanning calorimetry (DSC), using a recently developed three-step model containing both reversible and irreversible steps. The data highlight and help to rationalize different effects of the additives on the properties of full-length IgG, analyzed by onset and aggregation temperatures as well as by kinetic parameters derived from our model. Our results further help to explain the observation that stabilizing mutations in the antigen-binding fragment (Fab) significantly affect the kinetic parameters of its thermal denaturation, but not the aggregation properties of the full-length IgGs. We show that the proper analysis of DSC scans for full-length IgGs and their corresponding Fabs not only helps in ranking their stability in different formats and formulations, but provides important mechanistic insights for improving the conformational kinetic stability of IgGs.
Collapse
Affiliation(s)
- Jonas V Schaefer
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Erik Sedlák
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland.,b Center for Interdisciplinary Biosciences, P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Florian Kast
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Michal Nemergut
- c Department of Biophysics , P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Andreas Plückthun
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| |
Collapse
|
9
|
Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem 2017; 410:2467-2484. [PMID: 29256076 DOI: 10.1007/s00216-017-0772-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.
Collapse
Affiliation(s)
- Jude C Lakbub
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Joshua T Shipman
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA.
| |
Collapse
|
10
|
Henry KA, Kim DY, Kandalaft H, Lowden MJ, Yang Q, Schrag JD, Hussack G, MacKenzie CR, Tanha J. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human V H/V L Single-Domain Antibodies from In Vitro Display Libraries. Front Immunol 2017; 8:1759. [PMID: 29375542 PMCID: PMC5763143 DOI: 10.3389/fimmu.2017.01759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Human autonomous VH/VL single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2–3 µM), but had highly variable expression yields (range: 0.1–19 mg/L). Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous VH/VL immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Dae Young Kim
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Hiba Kandalaft
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J Lowden
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Qingling Yang
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Hussack G, Baral TN, Baardsnes J, van Faassen H, Raphael S, Henry KA, Zhang J, MacKenzie CR. A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display. Front Immunol 2017; 8:1406. [PMID: 29163485 PMCID: PMC5674936 DOI: 10.3389/fimmu.2017.01406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
ABTAG is a camelid single-domain antibody (sdAb) that binds to bovine serum albumin (BSA) with low picomolar affinity. In surface plasmon resonance (SPR) analyses using BSA surfaces, bound ABTAG can be completely dissociated from the BSA surfaces at low pH, over multiple cycles, without any reduction in the capacity of the BSA surfaces to bind ABTAG. A moderate throughput, SPR-based, antibody screening assay exploiting the unique features of ABTAG is described. Anti-carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) sdAbs were isolated from a phage-displayed sdAb library derived from the heavy chain antibody repertoire of a llama immunized with CEACAM6. Following one or two rounds of panning, enriched clones were expressed as ABTAG fusions in microtiter plate cultures. The sdAb-ABTAG fusions from culture supernatants were captured on BSA surfaces and CEACAM6 antigen was then bound to the captured molecules. The SPR screening method gives a read-out of relative expression levels of the fusion proteins and kinetic and affinity constants for CEACAM6 binding by the captured molecules. The library was also panned and screened by conventional methods and positive clones were subcloned and expressed for SPR analysis. Compared to conventional panning and screening, the SPR-based ABTAG method yielded a considerably higher diversity of binders, some with affinities that were three orders of magnitude higher affinity than those identified by conventional panning.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Toya Nath Baral
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jianbing Zhang
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
12
|
Henry KA, Kandalaft H, Lowden MJ, Rossotti MA, van Faassen H, Hussack G, Durocher Y, Kim DY, Tanha J. A disulfide-stabilized human V L single-domain antibody library is a source of soluble and highly thermostable binders. Mol Immunol 2017; 90:190-196. [PMID: 28820969 DOI: 10.1016/j.molimm.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
We have previously shown that incorporation of a second intradomain disulfide linkage into camelid VHH and human VH/VL single-domain antibodies confers increased thermostability. Here, we explored the effects of introducing an additional disulfide linkage, formed between Cys48 and Cys64 (Kabat numbering), into a phage-displayed synthetic human VL library. In comparison to an identical library bearing only the highly conserved Cys23-Cys88 disulfide linkage, the disulfide-stabilized VL library tolerated a similar degree of randomization but retained a higher level of functional diversity after selection with protein L. Both libraries yielded soluble, antigen-specific VLs that recognized a model antigen (maltose-binding protein) with similar affinities, in the micromolar range; however, the disulfide-stabilized antigen-specific VLs were much more thermostable (average ΔTm ∼10°C) than non-disulfide-stabilized VLs. This work provides proof-of-concept for building synthetic antibody libraries using disulfide-constrained immunoglobulin domains, thus avoiding pitfalls of post-hoc disulfide linkage engineering such as impaired antigen binding and reduced expression yield.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Hiba Kandalaft
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Michael J Lowden
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Henk van Faassen
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Dae Young Kim
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada; School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
13
|
Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody Aggregation: Insights from Sequence and Structure. Antibodies (Basel) 2016; 5:antib5030019. [PMID: 31558000 PMCID: PMC6698864 DOI: 10.3390/antib5030019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) are the fastest-growing biological therapeutics with important applications ranging from cancers, autoimmunity diseases and metabolic disorders to emerging infectious diseases. Aggregation of mAbs continues to be a major problem in their developability. Antibody aggregation could be triggered by partial unfolding of its domains, leading to monomer-monomer association followed by nucleation and growth. Although the aggregation propensities of antibodies and antibody-based proteins can be affected by the external experimental conditions, they are strongly dependent on the intrinsic antibody properties as determined by their sequences and structures. In this review, we describe how the unfolding and aggregation susceptibilities of IgG could be related to their cognate sequences and structures. The impact of antibody domain structures on thermostability and aggregation propensities, and effective strategies to reduce aggregation are discussed. Finally, the aggregation of antibody-drug conjugates (ADCs) as related to their sequence/structure, linker payload, conjugation chemistry and drug-antibody ratio (DAR) is reviewed.
Collapse
Affiliation(s)
- Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | | | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
14
|
Abstract
Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa; School of Environmental Sciences, University of Guelph, Guelph; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Akazawa-Ogawa Y, Uegaki K, Hagihara Y. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies. J Biochem 2015; 159:111-21. [PMID: 26289739 DOI: 10.1093/jb/mvv082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/05/2015] [Indexed: 01/14/2023] Open
Abstract
Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability.
Collapse
Affiliation(s)
- Yoko Akazawa-Ogawa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Koichi Uegaki
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
16
|
Abstract
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| |
Collapse
|
17
|
Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol 2015; 99:8549-62. [PMID: 25936376 PMCID: PMC4768215 DOI: 10.1007/s00253-015-6594-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (KD = 3–6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease.
Collapse
|
18
|
Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies. J Biol Chem 2015; 290:11905-17. [PMID: 25737448 DOI: 10.1074/jbc.m114.614842] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Indexed: 01/01/2023] Open
Abstract
Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike "camelized" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies.
Collapse
Affiliation(s)
- Romain Rouet
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Kip Dudgeon
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Mary Christie
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and the Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - David Langley
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Daniel Christ
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and the Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, New South Wales 2010, Australia
| |
Collapse
|
19
|
Moorthy BS, Xie B, Moussa EM, Iyer LK, Chandrasekhar S, Panchal JP, Topp EM. Effect of Hydrolytic Degradation on the In Vivo Properties of Monoclonal Antibodies. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. PLoS One 2014; 9:e115405. [PMID: 25526640 PMCID: PMC4272287 DOI: 10.1371/journal.pone.0115405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/21/2014] [Indexed: 11/21/2022] Open
Abstract
Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds.
Collapse
|
21
|
Kim DY, Hussack G, Kandalaft H, Tanha J. Mutational approaches to improve the biophysical properties of human single-domain antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1983-2001. [DOI: 10.1016/j.bbapap.2014.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 01/06/2023]
|
22
|
Kim DY, To R, Kandalaft H, Ding W, van Faassen H, Luo Y, Schrag JD, St-Amant N, Hefford M, Hirama T, Kelly JF, MacKenzie R, Tanha J. Antibody light chain variable domains and their biophysically improved versions for human immunotherapy. MAbs 2014; 6:219-35. [PMID: 24423624 PMCID: PMC3929445 DOI: 10.4161/mabs.26844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We set out to gain deeper insight into the potential of antibody light chain variable domains (VLs) as immunotherapeutics. To this end, we generated a naïve human VL phage display library and, by using a method previously shown to select for non-aggregating antibody heavy chain variable domains (VHs), we isolated a diversity of VL domains by panning the library against B cell super-antigen protein L. Eight domains representing different germline origins were shown to be non-aggregating at concentrations as high as 450 µM, indicating VL repertoires are a rich source of non-aggregating domains. In addition, the VLs demonstrated high expression yields in E. coli, protein L binding and high reversibility of thermal unfolding. A side-by-side comparison with a set of non-aggregating human VHs revealed that the VLs had similar overall profiles with respect to melting temperature (Tm), reversibility of thermal unfolding and resistance to gastrointestinal proteases. Successful engineering of a non-canonical disulfide linkage in the core of VLs did not compromise the non-aggregation state or protein L binding properties. Furthermore, the introduced disulfide bond significantly increased their Tms, by 5.5–17.5 °C, and pepsin resistance, although it somewhat reduced expression yields and subtly changed the structure of VLs. Human VLs and engineered versions may make suitable therapeutics due to their desirable biophysical features. The disulfide linkage-engineered VLs may be the preferred therapeutic format because of their higher stability, especially for oral therapy applications that necessitate high resistance to the stomach’s acidic pH and pepsin.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Rebecca To
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Hiba Kandalaft
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Wen Ding
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Henk van Faassen
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Yan Luo
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Joseph D Schrag
- Human Health Therapeutics; National Research Council Canada; Montréal, QC Canada
| | - Nadereh St-Amant
- Centre for Vaccine Evaluation; Biologics and Genetic Therapies Directorate;, Health Canada; Ottawa, ON Canada
| | - Mary Hefford
- Centre for Vaccine Evaluation; Biologics and Genetic Therapies Directorate;, Health Canada; Ottawa, ON Canada
| | - Tomoko Hirama
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - John F Kelly
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Roger MacKenzie
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada; School of Environmental Sciences; Ontario Agricultural College; University of Guelph; Guelph, ON Canada
| | - Jamshid Tanha
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada; School of Environmental Sciences; Ontario Agricultural College; University of Guelph; Guelph, ON Canada; Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa, ON Canada
| |
Collapse
|
23
|
Hagihara Y, Saerens D. Engineering disulfide bonds within an antibody. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2016-2023. [PMID: 25038323 DOI: 10.1016/j.bbapap.2014.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/23/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
Abstract
Antibodies have evolved to function in oxidative, extracellular environments. A pair of cysteines in close proximity will oxidatively react to form a disulfide bond that fixes and stabilizes the tertiary structure of a protein. Immunoglobulin G (IgG) includes several disulfide bonds, and the patterns of inter-chain disulfide bonds characterize different IgG sub-classes. Moreover, the Ig-fold domains are characterized by a buried intra-domain disulfide bond, which is important for its structural stability. However, the intra-domain disulfide bond can be replaced without crucial effects on the structure and function, if the domain structure is intrinsically stable or has been stabilized by protein engineering. In previous studies, disulfide bonds were removed by amino-acid substitution indicating that Val and/or Ala (i.e. Ala-Ala, Ala-Val, Val-Ala, and Val-Ala) pairs were preferred for cysteine replacement in the Ig-fold domain. As such, these mutations may be useful for the intracellular use of antibodies. Recently, additional intra-domain disulfide bonds have been shown to stabilize Ig-fold domains and whole IgGs. In heavy chain variable or light chain variable domains, the introduction of additional disulfide bonds into the framework region did not reduce antigen-binding affinity, suggesting that generating disulfide bonds may be a method for stabilizing IgG and antibody fragments, such as the antigen-binding fragment, and single-chain and single-domain antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoshihisa Hagihara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka Ikeda, Osaka 563-8577, Japan.
| | - Dirk Saerens
- Vrije Universiteit Brussel, Research Group Cellular & Molecular Immunology, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
24
|
Gilbreth RN, Chacko BM, Grinberg L, Swers JS, Baca M. Stabilization of the third fibronectin type III domain of human tenascin-C through minimal mutation and rational design. Protein Eng Des Sel 2014; 27:411-8. [PMID: 24996411 DOI: 10.1093/protein/gzu024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Non-antibody scaffolds are increasingly used to generate novel binding proteins for both research and therapeutic applications. Our group has developed the tenth fibronectin type III domain of human tenascin-C (TNfn3) as one such scaffold. As a scaffold, TNfn3 must tolerate extensive mutation to introduce novel binding sites. However, TNfn3's marginal stability (T(m) ∼ 59°C, ΔG(unfolding) = 5.7 kcal/mol) stands as a potential obstacle to this process. To address this issue, we sought to engineer highly stable TNfn3 variants. We used two parallel strategies. Using insights gained from structural analysis of other FN3 family members, we (1) rationally designed stabilizing point mutations or (2) introduced novel stabilizing disulfide bonds. Both strategies yielded highly stable TNfn3 variants with T(m) values as high as 83°C and ΔG(unfolding) values as high as 9.4 kcal/mol. Notably, only three or four mutations were required to achieve this level of stability with either approach. These results validate our rational design strategies and illustrate that substantial stability increases can be achieved with minimal mutation. One TNfn3 variant reported here has now been successfully used as a scaffold to develop two promising therapeutic molecules. We anticipate that other variants described will exhibit similar utility.
Collapse
Affiliation(s)
- R N Gilbreth
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - B M Chacko
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - L Grinberg
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - J S Swers
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - M Baca
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| |
Collapse
|
25
|
Salam NK, Adzhigirey M, Sherman W, Pearlman DA. Structure-based approach to the prediction of disulfide bonds in proteins. Protein Eng Des Sel 2014; 27:365-74. [PMID: 24817698 DOI: 10.1093/protein/gzu017] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein engineering remains an area of growing importance in pharmaceutical and biotechnology research. Stabilization of a folded protein conformation is a frequent goal in projects that deal with affinity optimization, enzyme design, protein construct design, and reducing the size of functional proteins. Indeed, it can be desirable to assess and improve protein stability in order to avoid liabilities such as aggregation, degradation, and immunogenic response that may arise during development. One way to stabilize a protein is through the introduction of disulfide bonds. Here, we describe a method to predict pairs of protein residues that can be mutated to form a disulfide bond. We combine a physics-based approach that incorporates implicit solvent molecular mechanics with a knowledge-based approach. We first assign relative weights to the terms that comprise our scoring function using a genetic algorithm applied to a set of 75 wild-type structures that each contains a disulfide bond. The method is then tested on a separate set of 13 engineered proteins comprising 15 artificial stabilizing disulfides introduced via site-directed mutagenesis. We find that the native disulfide in the wild-type proteins is scored well, on average (within the top 6% of the reasonable pairs of residues that could form a disulfide bond) while 6 out of the 15 artificial stabilizing disulfides scored within the top 13% of ranked predictions. Overall, this suggests that the physics-based approach presented here can be useful for triaging possible pairs of mutations for disulfide bond formation to improve protein stability.
Collapse
Affiliation(s)
- Noeris K Salam
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Matvey Adzhigirey
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Woody Sherman
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - David A Pearlman
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| |
Collapse
|
26
|
Akazawa-Ogawa Y, Takashima M, Lee YH, Ikegami T, Goto Y, Uegaki K, Hagihara Y. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. J Biol Chem 2014; 289:15666-79. [PMID: 24739391 DOI: 10.1074/jbc.m113.534222] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation.
Collapse
Affiliation(s)
- Yoko Akazawa-Ogawa
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| | - Mizuki Takashima
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Takahisa Ikegami
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Koichi Uegaki
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| | - Yoshihisa Hagihara
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| |
Collapse
|
27
|
Malia TJ, Teplyakov A, Brezski RJ, Luo J, Kinder M, Sweet RW, Almagro JC, Jordan RE, Gilliland GL. Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Proteins 2014; 82:1656-67. [PMID: 24638881 DOI: 10.1002/prot.24545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 11/09/2022]
Abstract
The functional role of human antihinge (HAH) autoantibodies in normal health and disease remains elusive, but recent evidence supports their role in the host response to IgG cleavage by proteases that are prevalent in certain disorders. Characterization and potential exploitation of these HAH antibodies has been hindered by the absence of monoclonal reagents. 2095-2 is a rabbit monoclonal antibody targeting the IdeS-cleaved hinge of human IgG1. We have determined the crystal structure of the Fab of 2095-2 and its complex with a hinge analog peptide. The antibody is selective for the C-terminally cleaved hinge ending in G236 and this interaction involves an uncommon disulfide in VL CDR3. We probed the importance of the disulfide in VL CDR3 through engineering variants. We identified one variant, QAA, which does not require the disulfide for biological activity or peptide binding. The structure of this variant offers a starting point for further engineering of 2095-2 with the same specificity, but lacking the potential manufacturing liability of an additional disulfide. Proteins 2014; 82:1656-1667. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas J Malia
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hussack G, Riazi A, Ryan S, van Faassen H, MacKenzie R, Tanha J, Arbabi-Ghahroudi M. Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility. Protein Eng Des Sel 2014; 27:191-8. [PMID: 24742504 DOI: 10.1093/protein/gzu011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Camelid heavy-chain antibody variable domains (VHHs) are emerging as potential antimicrobial reagents. We have engineered a previously isolated VHH (FlagV1M), which binds Campylobacter jejuni flagella, for greater thermal and proteolytic stability. Mutants of FlagV1M were obtained from an error-prone polymerase chain reaction library that was panned in the presence of gastrointestinal (GI) proteases. Additional FlagV1M mutants were obtained through disulfide-bond engineering. Each approach produced VHHs with enhanced thermal stability and protease resistance. When the beneficial mutations from both approaches were combined, a hyperstabilized VHH was created with superior stability. The hyperstabilized VHH bound C. jejuni flagella with wild-type affinity and was capable of potently inhibiting C. jejuni motility in assays performed after sequential digestion with three major GI proteases, demonstrating the remarkable stability imparted to the VHH by combining our engineering approaches.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | - Ali Riazi
- AbCelex Technologies, Inc., Toronto, ON, Canada L4V 1T4
| | - Shannon Ryan
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | - Henk van Faassen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | - Roger MacKenzie
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1 Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
29
|
Rouet R, Lowe D, Christ D. Stability engineering of the human antibody repertoire. FEBS Lett 2013; 588:269-77. [PMID: 24291820 DOI: 10.1016/j.febslet.2013.11.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
Human monoclonal antibodies often display limited thermodynamic and colloidal stabilities. This behavior hinders their production, and places limitations on the development of novel formulation conditions and therapeutic applications. Antibodies are highly diverse molecules, with much of the sequence variation observed within variable domain families and, in particular, their complementarity determining regions. This has complicated the development of comprehensive strategies for the stability engineering of the human antibody repertoire. Here we provide an overview of the field, and discuss recent advances in the development of robust and aggregation resistant antibody therapeutics.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - David Lowe
- MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
30
|
Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol 2013; 31:612-20. [DOI: 10.1016/j.tibtech.2013.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/30/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
|