1
|
Xiao J, Wang J, Cheng L, Gao S, Li S, Qiu N, Li H, Peng L, Geng F. A puzzle piece of protein N-glycosylation in chicken egg: N-glycoproteome of chicken egg vitelline membrane. Int J Biol Macromol 2020; 164:3125-3132. [PMID: 32860793 PMCID: PMC7448747 DOI: 10.1016/j.ijbiomac.2020.08.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
The chicken egg vitelline membrane (CEVM) is an important structure for the transmembrane transport of egg yolk components, protection of the blastodisc, and separation of egg white and egg yolk. In this study, the N-glycoproteome of the CEVM was mapped and analyzed in depth. Total protein of the CEVM was digested, and the glycopeptides were enriched by a hydrophilic interaction liquid chromatography microcolumn and identified by nano liquid chromatography/tandem mass spectrometry. A total of 435 N-glycosylation sites on 208 N-glycoproteins were identified in CEVM. Gene Ontology enrichment analysis showed that CEVM N-glycoproteins are mainly involved in the regulation of proteinases/inhibitors and transmembrane transport of lipids. Mucin-5B is the primary N-glycoprotein in the CEVM. Comparison of the main N-glycoproteins between the CEVM and other egg parts revealed the tissue specificity of N-glycosylation of egg proteins. The results provide insights into protein N-glycosylation in the chicken egg, CEVM functions and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
Gene Expression Profiling in Ovaries and Association Analyses Reveal HEP21 as a Candidate Gene for Sexual Maturity in Chickens. Animals (Basel) 2020; 10:ani10020181. [PMID: 31973127 PMCID: PMC7071030 DOI: 10.3390/ani10020181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Chicken meat and egg productions are essential for human beings. Sexual maturity is important for both egg production and meat flavor. It is necessary to elucidate the genetic mechanism of chicken sexual maturity. In current study, we used digital gene expression (DGE) RNA-sequencing analysis to investigate differential expression of genes in pre-pubertal and post-pubertal ovaries in two different sub-breeds of chicken with different onsets of sexual maturity. After the analysis of RNA-sequencing data, numerous differentially expressed genes were found in both comparisons (32 day old, early-sexual-maturity pre-laying hens (P-F-O1) vs. 103 day old early-sexual-maturity laying hens (P-F-O2), and 32 day old late-sexual-maturity pre-laying hens (L-F-O1) vs. 153 day old late-sexual-maturity pre-laying hens (L-F-O2)). With the bioinformatic analysis, hen egg protein 21 kDa (HEP21) was chosen as the candidate gene to conduct following experiment. The variations in HEP21 were screened and association analyses between rs315156783 and reproductive traits were investigated in fifth-generation Ningdu Yellow chickens from a closely bred population. These results demonstrated that HEP21 is a candidate gene for sexual maturity and ovary development in chickens. However, the underlying mechanism of how HEP21 regulates chicken sexual maturity needs further focused studies. Abstract The age of onset of sexual maturity is an important reproductive trait in chickens. In this study, we explored candidate genes associated with sexual maturity and ovary development in chickens. We performed DGE RNA-sequencing analyses of ovaries of pre-laying (P-F-O1, L-F-O1) and laying (P-F-O2, L-F-O2) hens of two sub-breeds of Ningdu Yellow chicken. A total of 3197 genes were identified in the two comparisons, and 966 and 1860 genes were detected exclusively in comparisons of P-F-O1 vs. P-F-O2 and L-F-O1 vs. L-F-O2, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that genes involved in transmembrane signaling receptor activity, cell adhesion, developmental processes, the neuroactive ligand–receptor interaction pathway, and the calcium signaling pathway were enriched in both comparisons. Genes on these pathways, including growth hormone (GH), integrin subunit beta 3 (ITGB3), thyroid stimulating hormone subunit beta (TSHB), prolactin (PRL), and transforming growth factor beta 3 (TGFB3), play indispensable roles in sexual maturity. As a gene unique to poultry, hen egg protein 21 kDa (HEP21) was chosen as the candidate gene. Differential expression and association analyses were performed. RNA-seq data and qPCR showed that HEP21 was significantly differentially expressed in pre-pubertal and pubertal ovaries. A total of 23 variations were detected in HEP21. Association analyses of single nucleotide polymorphisms (SNPs) in HEP21 and reproductive traits showed that rs315156783 was significantly related to comb height at 84 and 91 days. These results indicate that HEP21 is a candidate gene for sexual maturity in chickens. Our results contribute to a more comprehensive understanding of sexual maturity and reproduction in chickens.
Collapse
|
3
|
|
4
|
Nolasco E, Guha S, Majumder K. Bioactive Egg Proteins. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nutritional excellence of chicken egg is derived from its task as a life-giving medium, supplying the necessary nutrients to the hen's embryo while protecting it from external threats. Additionally, egg proteins possess unique biological activities above and beyond their known functional and nutritional roles. In the last few decades, extensive research has been done to evaluate the various biological activities of egg proteins and protein-derived peptides. Egg proteins and protein-derived peptides have been attributed to diverse biological activities, the most well-known being their antimicrobial properties. However, egg proteins and peptides have been shown to have other biological activities, such as antihypertensive, antioxidant, anticancer, immunomodulatory, and protease inhibitory activity. Egg-derived bioactive proteins have had a relevant scientific impact and exhibit promising applicability as an ingredient for the development of functional foods and nutraceuticals. However, it is critical to understand the effects of these proteins in signaling pathways to delineate their molecular mechanisms of action. Further studies are required to fill the current knowledge gaps. Therefore, the purpose of the chapter is to illustrate the present knowledge of the bioactivity of different egg proteins and their physiological effects.
Collapse
Affiliation(s)
- Emerson Nolasco
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Snigdha Guha
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Kaustav Majumder
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| |
Collapse
|
5
|
Pan P, Qiu N, Zhao H, Liu Y, Gao D. Identification of candidate proteins interacted with ovalbumin during the early phase of embryonic development. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1326056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pei Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Hongyan Zhao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Yaping Liu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Dan Gao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
6
|
Sui ZH, Li MF, Sun L. Tongue sole (Cynoglossus semilaevis) CD59: A complement inhibitor that binds bacterial cells and promotes bacterial escape from the killing of fish serum. FISH & SHELLFISH IMMUNOLOGY 2016; 58:442-448. [PMID: 27688119 DOI: 10.1016/j.fsi.2016.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
CD59 is a complement regulatory protein that inhibits the formation of membrane attack complex of complement. In this study, we examined the expression and activity of tongue sole (Cynoglossus semilaevis) CD59 (CsCD59). CsCD59 possesses the conserved structural features of CD59 and shares 33%-46% sequence identities with other fish CD59. Expression of CsCD59 was high in liver, spleen, and muscle, and was stimulated by infection of bacterial pathogens. Recombinant CsCD59 (rCsCD59) exhibited an apparent inhibition effect on the activation of tongue sole serum complement. ELISA and microscopy detected binding of rCsCD59 to a number of Gram-negative and Gram-positive bacteria. Interaction with rCsCD59 did not affect bacterial viability but significantly enhanced bacterial resistance against the killing effect of fish serum. Together these results indicate that fish CD59 may to some degrees facilitate a general escape of bacteria from complement-mediated immunity.
Collapse
Affiliation(s)
- Zhi-Hai Sui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Liu Y, Qiu N, Ma M. Comparative proteomic analysis of egg white proteins during the rapid embryonic growth period by combinatorial peptide ligand libraries. Poult Sci 2015; 94:2495-505. [DOI: 10.3382/ps/pev176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 11/20/2022] Open
|
8
|
Lim W, Song G. Pivotal roles for hormonally regulated expression of the HEP21 gene in the reproductive tract of chickens for oviduct development and in ovarian carcinogenesis. Domest Anim Endocrinol 2014; 48:136-44. [PMID: 24906939 DOI: 10.1016/j.domaniend.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/22/2014] [Accepted: 03/29/2014] [Indexed: 01/11/2023]
Abstract
Hen egg protein (HEP21) is a 21-kDa secreted protein and has a single copy of the Ly6/uPAR domain. Although HEP21 is expressed primarily in the chicken oviduct, its biological function(s) in the reproductive system of chickens is not known. Thus, in the present study, we investigated expression patterns of HEP21 with respect to hormonal regulation, oviduct development, changes in expression in laying hens undergoing induced molting, and in the development of ovarian carcinogenesis in laying hens. Results of present study indicated that HEP21 messenger RNA (mRNA) expression increased (P < 0.001) in the chicken oviduct in response to estrogen. In situ hybridization analyses revealed expression of HEP21 mRNA predominantly in glandular (GE) and luminal epithelia of the magnum of the chicken oviduct in response to estrogen. The expression of HEP21 mRNA decreased (P < 0.001) as the oviduct regressed during induced molting and increased (P < 0.001) with recrudescence of the oviduct following molting. HEP21 mRNA was most abundant in GE of the oviduct during recrudescence, but not during oviduct regression following induced molting. Moreover, we found abundant expression of HEP21 in GE of cancerous ovaries, but not in normal ovaries of hens. Collectively, results of present study suggest that HEP21 is an estrogen-responsive gene in the oviduct of hens that likely regulates development of the chicken oviduct, and egg production and formation. Furthermore, there is increased expression of HEP21 in epithelial-derived ovarian cancer suggesting that HEP21 could be used for diagnosis and monitoring carcinogenesis in laying hens and in women.
Collapse
Affiliation(s)
- W Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - G Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Wang J, Wu J. Proteomic analysis of fertilized egg white during early incubation. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2013.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Monson MS, Mendoza KM, Velleman SG, Strasburg GM, Reed KM. Expression profiles for genes in the turkey major histocompatibility complex B-locus. Poult Sci 2013; 92:1523-34. [PMID: 23687148 DOI: 10.3382/ps.2012-02951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic region of the genome essential to immune responses and animal health. In galliforms, the MHC is divided into 2 genetically unlinked regions (MHC-B and MHC-Y). Many MHC-B genes are involved in adaptive or innate immunity, yet others have nonimmune or unknown functions. The sequenced MHC-B region of the turkey (Meleagris gallopavo) contains 40 genes, the majority of which are predicted transcripts based on comparison with the chicken or quail, without direct evidence for expression. This study was designed to test for the presence of MHC-B gene transcripts in a panel of immune and nonimmune system tissues from domestic turkeys. This analysis provides the first locus-wide examination of MHC-B gene expression in any avian species. Most MHC-B genes were broadly expressed across tissues. Expression of all predicted genes was verified by reverse-transcription PCR, including B-butyrophilin 2 (BTN2), a predicted gene with no previous evidence for expression in any species. Previously undescribed splice variants were also detected and sequenced from 3 genes. Characterization of MHC-B expression patterns helps elucidate unknown gene functions and potential gene coregulation. Determining turkey MHC-B expression profiles increases our overall understanding of the avian MHC and provides a necessary resource for future research on the immunological response of these genes.
Collapse
Affiliation(s)
- M S Monson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
11
|
SUZUKI S, HOSOMICHI K, YOKOYAMA K, TSUDA K, HARA H, YOSHIDA Y, FUJIWARA A, MIZUTANI M, SHIINA T, KONO T, HANZAWA K. Primary analysis of DNA polymorphisms in theTRIMregion (MHCsubregion) of the Japanese quail,Coturnix japonica. Anim Sci J 2012; 84:90-6. [DOI: 10.1111/j.1740-0929.2012.01062.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Shingo SUZUKI
- Department of Molecular Life Science; Tokai University School of Medicine; Isehara
| | | | - Kana YOKOYAMA
- Department of Animal Science; Tokyo University of Agriculture; Atsugi
| | - Kaoru TSUDA
- Genome Research Center; Tokyo University of Agriculture; Tokyo
| | - Hiromi HARA
- Department of Animal Science; Tokyo University of Agriculture; Atsugi
| | - Yutaka YOSHIDA
- Department of Animal Science; Tokyo University of Agriculture; Atsugi
| | | | - Makoto MIZUTANI
- Avian Bioscience Research Center; Nagoya University of Graduate School of Bioagricultural Sciences; Nagoya
| | - Takashi SHIINA
- Department of Molecular Life Science; Tokai University School of Medicine; Isehara
| | | | - Kei HANZAWA
- Department of Animal Science; Tokyo University of Agriculture; Atsugi
| |
Collapse
|
12
|
Girish VM, Kumar S, Joseph L, Jobichen C, Kini RM, Sivaraman J. Identification and structural characterization of a new three-finger toxin hemachatoxin from Hemachatus haemachatus venom. PLoS One 2012; 7:e48112. [PMID: 23144733 PMCID: PMC3483290 DOI: 10.1371/journal.pone.0048112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 09/19/2012] [Indexed: 01/26/2023] Open
Abstract
Snake venoms are rich sources of biologically active proteins and polypeptides. Three-finger toxins are non-enzymatic proteins present in elapid (cobras, kraits, mambas and sea snakes) and colubrid venoms. These proteins contain four conserved disulfide bonds in the core to maintain the three-finger folds. Although all three-finger toxins have similar fold, their biological activities are different. A new three-finger toxin (hemachatoxin) was isolated from Hemachatus haemachatus (Ringhals cobra) venom. Its amino acid sequence was elucidated, and crystal structure was determined at 2.43 Å resolution. The overall fold is similar to other three-finger toxins. The structure and sequence analysis revealed that the fold is maintained by four highly conserved disulfide bonds. It exhibited highest similarity to particularly P-type cardiotoxins that are known to associate and perturb the membrane surface with their lipid binding sites. Also, the increased B value of hemachotoxin loop II suggests that loop II is flexible and may remain flexible until its interaction with membrane phospholipids. Based on the analysis, we predict hemachatoxin to be cardiotoxic/cytotoxic and our future experiments will be directed to characterize the activity of hemachatoxin.
Collapse
Affiliation(s)
| | - Sundramurthy Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Lissa Joseph
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (RMK); (JS)
| | - J. Sivaraman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail: (RMK); (JS)
| |
Collapse
|
13
|
Wang J, Liang Y, Omana DA, Kav NNV, Wu J. Proteomics analysis of egg white proteins from different egg varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:272-282. [PMID: 22136111 DOI: 10.1021/jf2033973] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The market of specialty eggs, such as omega-3-enriched eggs, organic eggs, and free-range eggs, is continuously growing. The nutritional composition of egg yolk can be manipulated by feed diet; however, it is not known if there is any difference in the composition of egg white proteins among different egg varieties. The purpose of the study was to compare the egg white proteins among six different egg varieties using proteomics analysis. Egg white proteins were analyzed using two-dimensional gel electrophoresis (2-DE), and 89 protein spots were subjected to LC-MS/MS. A total of 23 proteins, belonging to Gallus gallus , were identified from 72 detected protein spots. A quiescence-specific protein precursor in egg white was identified for the first time in this study. Significant differences in the abundant levels of 19 proteins (from 65 protein spots) were observed among six egg varieties. Four proteins, ovalbumin-related protein Y, cystatin, avidin, and albumin precursor, were not different among these six egg varieties. These findings suggest that the abundance, but not the composition, of egg white proteins varied among the egg varieties.
Collapse
Affiliation(s)
- Jiapei Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | | | | | |
Collapse
|
14
|
Vidal-Dupiol J, Adjeroud M, Roger E, Foure L, Duval D, Mone Y, Ferrier-Pages C, Tambutte E, Tambutte S, Zoccola D, Allemand D, Mitta G. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC PHYSIOLOGY 2009; 9:14. [PMID: 19653882 PMCID: PMC2728513 DOI: 10.1186/1472-6793-9-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/04/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. RESULTS In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. CONCLUSION Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health.
Collapse
Affiliation(s)
- Jeremie Vidal-Dupiol
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Mehdi Adjeroud
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Emmanuel Roger
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Laurent Foure
- Aquarium du Cap d'Agde, 11 rue des 2 freres, 34300 Cap d'Agde, France
| | - David Duval
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Yves Mone
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Christine Ferrier-Pages
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Eric Tambutte
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Sylvie Tambutte
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Didier Zoccola
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Guillaume Mitta
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
15
|
Abstract
Using 1-D PAGE and LC-MS/MS and MS(3) we identified 78 chicken egg white proteins, 54 of which were identified in egg white for the first time. All proteins were quantitated by calculating their exponentially modified protein abundance index (emPAI). Some previously known egg white components not characterized by amino acid sequences before, such as alpha-2-macroglobulin, were associated to a sequence for the first time. The predicted sequence was confirmed by MS-sequenced peptides covering 42% of the entire sequence. alpha-2-Macroglobulin occurred in egg white at the same concentration as ovostatin with which it showed 35% identity. For other proteins, which were previously only characterized by partial sequences, such as beta-ovomucin or ovalbumin X, we identified and confirmed predicted complete sequences with a high coverage by MS-sequenced peptides. New proteins included a 7 kDa protein consisting of a single secretoglobin sequence (ovosecretoglobin), a 7 kDa protein with similarity to black swan cygnin and turkey meleagrin (gallin) and proteins involved in binding, modification, and possibly detoxification, of bacterial lipopolysaccaride. The list of egg white proteins provided is by far the most comprehensive at present and is intended to serve as a starting point for the isolation and functional characterization of interesting new proteins.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Martinsried, Germany.
| |
Collapse
|
16
|
Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, Inoko H, Miller MM. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. THE JOURNAL OF IMMUNOLOGY 2007; 178:7162-72. [PMID: 17513765 DOI: 10.4049/jimmunol.178.11.7162] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC haplotypes have a remarkable influence on whether tumors form following infection of chickens with oncogenic Marek's disease herpesvirus. Although resistance to tumor formation has been mapped to a subregion of the chicken MHC-B region, the gene or genes responsible have not been identified. A full gene map of the subregion has been lacking. We have expanded the MHC-B region gene map beyond the 92-kb core previously reported for another haplotype revealing the presence of 46 genes within 242 kb in the Red Jungle Fowl haplotype. Even though MHC-B is structured differently, many of the newly revealed genes are related to loci typical of the MHC in other species. Other MHC-B loci are homologs of genes found within MHC paralogous regions (regions thought to be derived from ancient duplications of a primordial immune defense complex where genes have undergone differential silencing over evolutionary time) on other chromosomes. Still others are similar to genes that define the NK complex in mammals. Many of the newly mapped genes display allelic variability and fall within the MHC-B subregion previously shown to affect the formation of Marek's disease tumors and hence are candidates for genes conferring resistance.
Collapse
Affiliation(s)
- Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|