1
|
LinLi Z, Hu K, Guo Q, Guo S. Static and dynamic connectivity structure of white-matter functional networks across the adult lifespan. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111252. [PMID: 39809409 DOI: 10.1016/j.pnpbp.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/28/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan. We identified GM and WM functional networks (FNs) using k-means clustering. Static and dynamic analyses of WM functional network connectivity (FNC) were performed to explore age effects on WM-FNs and recurrent patterns of dynamic FNC. We identified 9 WM and 12 GM FNs. Age-related effects on WM FNC strength and WM-GM FNC dynamics included linear positive and U-shaped age trajectories in static FNC strength, and linear negative and inverted U-shaped trajectories in FNC temporal variability. Three distinct brain states with significant age-related differences were identified and validated. These findings were largely replicated in the validation analysis. High integration and low temporal variability in WM-GM FNC may indicate reduced adaptability of the network system in older adults, offering insights into brain aging processes.
Collapse
Affiliation(s)
- Zeqiang LinLi
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510004, PR China; MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China
| | - Kang Hu
- School of Information Engineering, Wuhan Business University, Wuhan 430056, PR China; MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China
| | - Qingdong Guo
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China.
| |
Collapse
|
2
|
Lee J, Kim M, Kim N, Hwang Y, Lee KH, Lee J, Lee YJ, Kim SJ. Evidence of White Matter Integrity Changes in the Anterior Cingulum Among Shift Workers: A Cross-Sectional Study. Nat Sci Sleep 2022; 14:1417-1425. [PMID: 35996418 PMCID: PMC9392483 DOI: 10.2147/nss.s369192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction We investigated the white matter integrity in shift and non-shift workers and its associations with sleep and activity. Methods Diffusion tensor imaging (DTI) was performed on 61 shift workers and 31 non-shift workers. Their sleep and activity profiles were assessed using the Pittsburgh Sleep Quality Index (PSQI), sleep diaries, and actigraphy. Fractional anisotropy (FA) (a measure of white matter integrity) was calculated using DTI tractography. Results Shift workers exhibited higher FA values in the bilateral anterior cingulum than did non-shift workers. An increased FA in the right anterior cingulum was correlated with poor sleep quality (ie, a high PSQI score) in shift workers. An increased FA in the right anterior cingulum was also correlated with higher actigraphic activity indices (the mesor and M10 indices) in shift workers. Discussion The white matter integrity of the anterior cingulum was altered in shift workers, perhaps in association with sleep and activity disturbances.
Collapse
Affiliation(s)
- Jiye Lee
- Department of Psychiatry, Sungkyunkwan University College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Minjeong Kim
- Department of Psychiatry, Sungkyunkwan University College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Nambeom Kim
- Department of Biomedical Engineering Research Center, Gachon University, Incheon, Republic of Korea
| | - Yunjee Hwang
- Department of Psychiatry, Sungkyunkwan University College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Kyung Hwa Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University, College of Medicine and Hospital, Seoul, Republic of Korea
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jooyoung Lee
- Department of Psychiatry, Sungkyunkwan University College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University, College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seog Ju Kim
- Department of Psychiatry, Sungkyunkwan University College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|