1
|
Fu Q, Alabed S, Hoole SP, Abraham G, Weir-McCall JR. Prognostic Value of Stress Perfusion Cardiac MRI in Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Effects of the Scanner, Stress Agent, and Analysis Technique. Radiol Cardiothorac Imaging 2024; 6:e230382. [PMID: 38814186 PMCID: PMC11211944 DOI: 10.1148/ryct.230382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Purpose To perform a systematic review and meta-analysis to assess the prognostic value of stress perfusion cardiac MRI in predicting cardiovascular outcomes. Materials and Methods A systematic literature search from the inception of PubMed, Embase, Web of Science, and China National Knowledge Infrastructure until January 2023 was performed for articles that reported the prognosis of stress perfusion cardiac MRI in predicting cardiovascular outcomes. The quality of included studies was assessed using the Quality in Prognosis Studies tool. Reported hazard ratios (HRs) of univariable regression analyses with 95% CIs were pooled. Comparisons were performed across different analysis techniques (qualitative, semiquantitative, and fully quantitative), magnetic field strengths (1.5 T vs 3 T), and stress agents (dobutamine, adenosine, and dipyridamole). Results Thirty-eight studies with 58 774 patients with a mean follow-up time of 53 months were included. There were 1.9 all-cause deaths and 3.5 major adverse cardiovascular events (MACE) per 100 patient-years. Stress-inducible ischemia was associated with a higher risk of all-cause mortality (HR: 2.55 [95% CI: 1.89, 3.43]) and MACE (HR: 3.90 [95% CI: 2.69, 5.66]). For MACE, pooled HRs of qualitative, semiquantitative, and fully quantitative methods were 4.56 (95% CI: 2.88, 7.22), 3.22 (95% CI: 1.60, 6.48), and 1.78 (95% CI: 1.39, 2.28), respectively. For all-cause mortality, there was no evidence of a difference between qualitative and fully quantitative methods (P = .79). Abnormal stress perfusion cardiac MRI findings remained prognostic when subgrouped based on underlying disease, stress agent, and field strength, with HRs of 3.54, 2.20, and 3.38, respectively, for all-cause mortality and 3.98, 3.56, and 4.21, respectively, for MACE. There was no evidence of subgroup differences in prognosis between field strengths or stress agents. There was significant heterogeneity in effect size for MACE outcomes in the subgroups assessing qualitative versus quantitative stress perfusion analysis, underlying disease, and field strength. Conclusion Stress perfusion cardiac MRI is valuable for predicting cardiovascular outcomes, regardless of the analysis method, stress agent, or magnetic field strength used. Keywords: MR-Perfusion, MRI, Cardiac, Meta-Analysis, Stress Perfusion, Cardiac MR, Cardiovascular Disease, Prognosis, Quantitative © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Qing Fu
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - Samer Alabed
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - Stephen P. Hoole
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - George Abraham
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - Jonathan R. Weir-McCall
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| |
Collapse
|
2
|
Yarahmadi P, Forouzannia SM, Forouzannia SA, Malik SB, Yousefifard M, Nguyen PK. Prognostic Value of Qualitative and Quantitative Stress CMR in Patients With Known or Suspected CAD. JACC Cardiovasc Imaging 2024; 17:248-265. [PMID: 37632499 DOI: 10.1016/j.jcmg.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Recent studies suggest that quantitative cardiac magnetic resonance (CMR) may have more accuracy than qualitative CMR in coronary artery disease (CAD) diagnosis. However, the prognostic value of quantitative and qualitative CMR has not been compared systematically. OBJECTIVES The objective was to conduct a systematic review and meta-analysis assessing the utility of qualitative and quantitative stress CMR in the prognosis of patients with known or suspected CAD. METHODS A comprehensive search was performed through Embase, Scopus, Web of Science, and Medline. Studies that used qualitative vasodilator CMR or quantitative CMR assessments to compare the prognosis of patients with positive and negative CMR results were extracted. A meta-analysis was then performed to assess: 1) major adverse cardiovascular events (MACE) including cardiac death, nonfatal myocardial infarction (MI), unstable angina, and coronary revascularization; and 2) cardiac hard events defined as the composite of cardiac death and nonfatal MI. RESULTS Forty-one studies with 38,030 patients were included in this systematic review. MACE occurred significantly more in patients with positive qualitative (HR: 3.86; 95% CI: 3.28-4.54) and quantitative (HR: 4.60; 95% CI: 1.60-13.21) CMR assessments. There was no significant difference between qualitative and quantitative CMR assessments in predicting MACE (P = 0.75). In studies with qualitative CMR assessment, cardiac hard events (OR: 7.21; 95% CI: 4.99-10.41), cardiac death (OR: 5.63; 95% CI: 2.46-12.92), nonfatal MI (OR: 7.46; 95% CI: 3.49-15.96), coronary revascularization (OR: 6.34; 95% CI: 3.42-1.75), and all-cause mortality (HR: 1.66; 95% CI: 1.12-2.47) were higher in patients with positive CMR. CONCLUSIONS The presence of myocardial ischemia on CMR is associated with worse clinical outcomes in patients with known or suspected CAD. Both qualitative and quantitative stress CMR assessments are helpful tools for predicting clinical outcomes.
Collapse
Affiliation(s)
- Pourya Yarahmadi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA
| | | | - Seyed Ali Forouzannia
- Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sachin B Malik
- Department of Radiology, Division of Cardiovascular Imaging, Stanford University, Stanford, California, USA
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Patricia K Nguyen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA.
| |
Collapse
|
3
|
Ricci F, Khanji MY, Bisaccia G, Cipriani A, Di Cesare A, Ceriello L, Mantini C, Zimarino M, Fedorowski A, Gallina S, Petersen SE, Bucciarelli-Ducci C. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Cardiol 2023; 8:662-673. [PMID: 37285143 PMCID: PMC10248816 DOI: 10.1001/jamacardio.2023.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023]
Abstract
Importance The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown. Objective To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain. Data Sources PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021. Study Selection Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included. Data Extraction and Synthesis This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Main Outcomes and Measures Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death. Results A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%. Conclusion and Relevance In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
| | - Mohammed Y. Khanji
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Annamaria Di Cesare
- Cardiology Unit, Rimini Hospital, Local Health Authority of Romagna, Rimini, Italy
| | - Laura Ceriello
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Steffen E. Petersen
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust London, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
4
|
Chen A, Wang H, Fan B, Xu Y, Chen W, Dai N. Prognostic value of normal positron emission tomography myocardial perfusion imaging in patients with known or suspected coronary artery disease: a meta-analysis. Br J Radiol 2017; 90:20160702. [PMID: 28306335 DOI: 10.1259/bjr.20160702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Several studies have confirmed high diagnostic performance of positron emission tomography (PET) myocardial perfusion imaging (MPI) in patients with known or suspected coronary artery disease. However, whether the superior diagnostic accuracy could translate into improved mortality outcomes remains unknown. The aim of this study was to define the prognostic value of normal PET MPI. METHODS PubMed and EMBASE were searched to identify related studies up to June 2016. All studies using PET MPI to evaluate subjects with known or suspected coronary artery disease and providing absolute number of patients with a negative test and primary data on clinical outcomes with a follow-up time ≥3 months were included for analysis. RESULTS The search yielded 11 studies comprising 20,471 patients for final analysis. The negative-predictive value (NPV) for cardiac death, all-cause death and major adverse cardiovascular events (MACE) were 98.80% [95% confidence interval (CI), 97.64%-99.39%], 94.89% (95% CI: 92.99-96.30%) and 90.26% (95% CI: 78.01-96.03%), over 36.9 months of follow-up for cardiac death, over 26.8 months for all-cause death and 35.7 months for MACE. The corresponding annualized event rates were 0.39%, 2.29% and 3.27%, respectively. In subgroup analyses of different imaging analysis methods for PET MPI, studies using perfusion abnormity had a similar NPV as compared with those using coronary flow reserve (98.46% vs 98.86%, p-value = NS), with a corresponding annualized event rate after negative tests (equal to 1 - NPV) as 0.45% and 0.42%, respectively. CONCLUSION Normal PET has a high NPV for cardiac death, MACE and all-cause mortality. Different indexes used for PET imaging analysis have a comparable prognostic value. Advances in knowledge: A normal PET MPI conferred a very low risk of cardiac death of 0.39% per year, which is close to that of a normal aged-matched population.
Collapse
Affiliation(s)
- A'Di Chen
- 1 Cardiology Department, TaiZhou Fourth People's Hospital, TaiZhou, JiangSu, China
| | - HaoSen Wang
- 2 Department of Science and Education, TaiZhou Fourth People's Hospital, TaiZhou, JiangSu, China
| | - Bing Fan
- 3 Cardiology Department, ZhongShan Hospital of Fudan University, Shanghai, China
| | - YaWei Xu
- 4 Cardiology Department, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wei Chen
- 4 Cardiology Department, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Neng Dai
- 4 Cardiology Department, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
5
|
Le TT, Huang W, Bryant JA, Cook SA, Chin CWL. Stress cardiovascular magnetic resonance imaging: current and future perspectives. Expert Rev Cardiovasc Ther 2017; 15:181-189. [DOI: 10.1080/14779072.2017.1296356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Thu-Thao Le
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Weiting Huang
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Jennifer Ann Bryant
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart Alexander Cook
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Calvin Woon-Loong Chin
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Qayyum AA, Qayyum F, Larsson HBW, Kjaer A, Hasbak P, Vejlstrup NG, Kastrup J. Comparison of rest and adenosine stress quantitative and semi-quantitative myocardial perfusion using magnetic resonance in patients with ischemic heart disease. Clin Imaging 2016; 41:149-156. [PMID: 27855349 DOI: 10.1016/j.clinimag.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
The aim was to compare absolute quantified myocardial perfusion (MP) to semi-quantitative measurements of MP using MRI for detection of ischemia. Twenty-nine patients underwent rest and stress MP imaging obtained by 1.5T MRI and analyzed using own developed software and by commercial available software. Linear regression analysis demonstrated that absolute quantitative data correlated stronger to maxSI (rest: r=0.296, p=.193; stress: r=0.583, p=0.011; myocardial perfusion reserve (MPR): r=0.789, p<0.001; and Δ myocardial blood flow (Δ MBF: r=0.683, p=0.004) than to upslope (rest: r=0.420, p=0.058; stress: r=0.096, p=0.704; MPR: r=0.682, p=0.004; and Δ MBF: r=0.055, p=0.804). Absolute quantified MP was able to distinguish between ischemic and non-ischemic territories at rest (left anterior descending artery (LAD): 103.1±11.3mL/100g/min vs. 206.3±98.5mL/100g/min; p=0.001, right coronary artery (RCA): 124.1±45.2mL/100g/min vs. 241.3±81.7mL/100g/min; p<0.001, and left circumflex artery (LCX): 132.8±53.8mL/100g/min vs. 181.2±56.6mL/100g/min; p=0.060) and at stress (LAD: 148.1±47.2mL/100g/min vs. 296.6±111.6mL/100g/min; p=0.012, RCA: 173.4±63.7mL/100g/min vs. 290.2±100.6mL/100g/min; p=0.008, and LCX: 206.6±105.1mL/100g/min vs. 273.8±78.0mL/100g/min; p=0.186). The correlation between global maxSI and positron emission tomography data was non-significant at rest and borderline significant at stress (r=0.265, p=0.382 and r=0.601, p=0.050, respectively). Quantified MP may be useful in patients for detection of ischemia.
Collapse
Affiliation(s)
- Abbas A Qayyum
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Faiza Qayyum
- Department of Cardiology, Hvidovre Hospital, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Kettegaard Alle 30, 2650 Hvidovre, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Blegdamsvej 9, 2100 Copenhagen, Denmark; Functional Imaging Unit, Diagnostic Department, Glostrup Hospital, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Ndr. Ringvej 57, 2600 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Niels G Vejlstrup
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen and Faculty of Health Sciences, Copenhagen University, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Korosoglou G, Giusca S, Gitsioudis G, Erbel C, Katus HA. Cardiac magnetic resonance and computed tomography angiography for clinical imaging of stable coronary artery disease. Diagnostic classification and risk stratification. Front Physiol 2014; 5:291. [PMID: 25147526 PMCID: PMC4123729 DOI: 10.3389/fphys.2014.00291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022] Open
Abstract
Despite advances in the pharmacologic and interventional treatment of coronary artery disease (CAD), atherosclerosis remains the leading cause of death in Western societies. X-ray coronary angiography has been the modality of choice for diagnosing the presence and extent of CAD. However, this technique is invasive and provides limited information on the composition of atherosclerotic plaque. Coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) have emerged as promising non-invasive techniques for the clinical imaging of CAD. Hereby, CCTA allows for visualization of coronary calcification, lumen narrowing and atherosclerotic plaque composition. In this regard, data from the CONFIRM Registry recently demonstrated that both atherosclerotic plaque burden and lumen narrowing exhibit incremental value for the prediction of future cardiac events. However, due to technical limitations with CCTA, resulting in false positive or negative results in the presence of severe calcification or motion artifacts, this technique cannot entirely replace invasive angiography at the present time. CMR on the other hand, provides accurate assessment of the myocardial function due to its high spatial and temporal resolution and intrinsic blood-to-tissue contrast. Hereby, regional wall motion and perfusion abnormalities, during dobutamine or vasodilator stress, precede the development of ST-segment depression and anginal symptoms enabling the detection of functionally significant CAD. While CT generally offers better spatial resolution, the versatility of CMR can provide information on myocardial function, perfusion, and viability, all without ionizing radiation for the patients. Technical developments with these 2 non-invasive imaging tools and their current implementation in the clinical imaging of CAD will be presented and discussed herein.
Collapse
|
8
|
El Aidi H, Adams A, Moons KGM, Den Ruijter HM, Mali WPTM, Doevendans PA, Nagel E, Schalla S, Bots ML, Leiner T. Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease: a systematic review of prognostic studies. J Am Coll Cardiol 2014; 63:1031-45. [PMID: 24486280 DOI: 10.1016/j.jacc.2013.11.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/05/2013] [Accepted: 11/26/2013] [Indexed: 12/15/2022]
Abstract
The goal of this study was to review the prognostic value of cardiac magnetic resonance (CMR) imaging findings for future cardiovascular events in patients with a recent myocardial infarction (MI) and patients with suspected or known coronary artery disease (CAD). Although the diagnostic value of CMR findings is established, the independent prognostic association with future cardiovascular events remains largely unclear. Studies published by February 2013, identified by systematic MEDLINE and EMBASE searches, were reviewed for associations between CMR findings (left ventricular ejection fraction [LVEF], wall motion abnormalities [WMA], abnormal myocardial perfusion, microvascular obstruction, late gadolinium enhancement, edema, and intramyocardial hemorrhage) and hard events (all-cause mortality, cardiac death, cardiac transplantation, and MI) or major adverse cardiovascular events (MACE) (hard events and other cardiovascular events defined by the authors of the evaluated papers). Fifty-six studies (n = 25,497) were evaluated. For patients with recent MI, too few patients were evaluated to establish associations between CMR findings and hard events. LVEF (range of adjusted hazard ratios [HRs]: 1.03 to 1.05 per % decrease) was independently associated with MACE. In patients with suspected or known CAD, WMA (adjusted HRs: 1.87 to 2.99), inducible perfusion defects (adjusted HRs: 3.02 to 7.77), LVEF (adjusted HRs: 0.72 to 0.82 per 10% increase), and infarction (adjusted HRs: 2.82 to 9.43) were independently associated with hard events, and the presence of inducible perfusion defects was associated with MACE (adjusted HRs: 1.76 to 3.21). The independent predictor of future cardiovascular events for patients with a recent MI was LVEF, and the predictors for patients with suspected or known CAD were WMA, inducible perfusion defects, LVEF, and presence of infarction.
Collapse
Affiliation(s)
- Hamza El Aidi
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Arthur Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Karel G M Moons
- Julius Center of Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester M Den Ruijter
- Julius Center of Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Willem P Th M Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eike Nagel
- Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, London, United Kingdom
| | - Simon Schalla
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Michiel L Bots
- Julius Center of Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
9
|
Gargiulo P, Dellegrottaglie S, Bruzzese D, Savarese G, Scala O, Ruggiero D, D'Amore C, Paolillo S, Agostoni P, Bossone E, Soricelli A, Cuocolo A, Trimarco B, Perrone Filardi P. The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis. Circ Cardiovasc Imaging 2013; 6:574-82. [PMID: 23771988 DOI: 10.1161/circimaging.113.000035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ischemia detection with stress cardiac magnetic resonance (CMR) is typically based on induction of either myocardial perfusion defect or wall motion abnormality. Single-center studies have shown the high value of stress CMR for risk stratification. The aim of this study was to define the prognostic value of stress CMR for prediction of adverse cardiac events in patients with known or suspected coronary artery disease. METHODS AND RESULTS Studies published between January 1985 and April 2012 were identified by database search. We included studies using stress CMR to evaluate subjects with known or suspected coronary artery disease and providing primary data on clinical outcomes of nonfatal myocardial infarction or cardiac death with a follow-up time ≥3 months. Total of 14 studies were finally included, recruiting 12 178 patients. The negative predictive value for nonfatal myocardial infarction and cardiac death of normal CMR was 98.12% (95% confidence interval, 97.26-98.83) during a weighted mean follow-up of 25.3 months, resulting in estimated event rate after a negative test equal to 1.88% (95% confidence interval, 1.17-2.74). The corresponding annualized event rate after a negative test was 1.03%. Comparable negative predictive values for major coronary events were obtained in studies considering the absence of inducible perfusion defect compared with those evaluating the absence of inducible wall motion abnormality (98.39% versus 97.31%, respectively; P=0.227 by meta-regression analysis). CONCLUSIONS Stress CMR has a high negative predictive value for adverse cardiac events, and the absence of inducible perfusion defect or wall motion abnormality shows a similar ability to identify low-risk patients with known or suspected coronary artery disease.
Collapse
Affiliation(s)
- Paola Gargiulo
- SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lipinski MJ, McVey CM, Berger JS, Kramer CM, Salerno M. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol 2013; 62:826-38. [PMID: 23727209 DOI: 10.1016/j.jacc.2013.03.080] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/24/2013] [Accepted: 03/26/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study sought to perform a systematic review and meta-analysis to understand the role of stress cardiac magnetic resonance imaging (CMR) in assessing cardiovascular prognosis in patients with known or suspected coronary artery disease (CAD). BACKGROUND Although stress CMR is excellent for the diagnosis of obstructive CAD, the prognostic value of stress CMR has been less well described. METHODS PubMed, Cochrane CENTRAL, and metaRegister of Controlled Trials were searched for stress CMR studies with >6 months of prognostic data. Primary endpoints were cardiovascular death, myocardial infarction (MI), and a composite outcome of cardiovascular death or MI during follow-up. Summary effect estimates were generated with random-effects modeling, and annualized event rates were assessed. RESULTS Nineteen studies (14 vasodilator, 4 dobutamine, and 1 that used both) involved a total of 11,636 patients with a mean follow-up of 32 months. Patients had a mean age of 63 ± 12 years, 63% were male, and 26% had previous MI; mean left ventricular ejection fraction was 61 ± 12%; and late gadolinium enhancement was present in 29% and ischemia in 32%. Patients with ischemia had a higher incidence of MI (odds ratio [OR]: 7.7; p < 0.0001), cardiovascular death (OR: 7.0; p < 0.0001), and the combined endpoint (OR: 6.5; p < 0.0001) compared with those with a negative study. The combined outcome annualized events rates were 4.9% for a positive versus 0.8% for a negative stress CMR (p < 0.0001), 2.8% versus 0.3% for cardiovascular death (p < 0.0001), and 2.6% versus 0.4% for MI (p < 0.0005). The presence of late gadolinium enhancement was also significantly associated with a worse prognosis. CONCLUSIONS A negative stress CMR study is associated with very low risk of cardiovascular death and MI. Stress CMR has excellent prognostic characteristics and may help guide risk stratification of patients with known or suspected CAD.
Collapse
Affiliation(s)
- Michael J Lipinski
- Department of Medicine, Division of Cardiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
11
|
Value of cardiac 320-multidetector computed tomography and cardiac magnetic resonance imaging for assessment of myocardial perfusion defects in patients with known chronic ischemic heart disease. Int J Cardiovasc Imaging 2013; 29:1585-93. [PMID: 23653247 DOI: 10.1007/s10554-013-0234-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/01/2013] [Indexed: 01/19/2023]
Abstract
The challenge for therapies targeting perfusion abnormalities is to identify and evaluate the region of interest. The aim of this study was to compare rest and stress myocardial perfusion measured by cardiac multi-detector computed tomography (MDCT) and cardiac magnetic resonance (CMR) imaging in patients with invasive coronary angiography demonstrated occluded vessels. Twenty-four patients with refractory angina due to occluded coronary arteries underwent perfusion imaging obtained by 320-MDCT scanner and 1.5 T MR scanner. Rest and adenosine stress images were obtained and interpreted using the modified 17-segment American Heart Association model. For the qualitative analysis, each segment was graded according to the following scoring system: 0 = no defect, 1 = hypoperfusion transmural extent <1/3, 2 = 1/3-1/2, 3 = >1/2, and 4 = infarct stigmata. In the semiquantitative analysis the perfusion was either scored 0 (normal) or 1 (abnormal). The summed rest and stress scores were calculated. MDCT and CMR had a high probability to identify perfusion defects. An excellent correlation between MDCT and CMR summed rest (r = 0.916) and stress scores (r = 0.915) was found. The interobserver reproducibility was high for MDCT and CMR images. The qualitative and semiquantitative MDCT against CMR analysis of rest and stress images showed high concordance to detect perfusion defects per vascular territory and on a per myocardial segment basis. 320-MDCT and CMR perfusion imaging can be used clinically to identify myocardial perfusion defects and potentially evaluate the effect of therapy targeting perfusion abnormalities.
Collapse
|
12
|
Grover S, Srinivasan G, Selvanayagam JB. Myocardial viability imaging: does it still have a role in patient selection prior to coronary revascularisation? Heart Lung Circ 2012; 21:468-79. [PMID: 22521496 DOI: 10.1016/j.hlc.2012.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/06/2012] [Accepted: 03/09/2012] [Indexed: 11/28/2022]
Abstract
Patients with severe left ventricular (LV) dysfunction and multi-vessel coronary artery disease (CAD) are at high risk during revascularisation, however they are also likely to derive the most benefit. Historically, the detection of dysfunctional but potentially viable myocardium ('stunned or hibernating myocardium') has been central to the decision-making regarding revascularisation. A number of recent studies have challenged this paradigm, questioning the role of viability testing in this population. In this review, we will examine the position of viability testing and how it is best incorporated in the modern era of coronary revascularisation. We will outline the role of currently available imaging modalities in viability assessment. Myocardial viability testing will continue to play a role in revascularisation decisions, although larger randomised trials with clinical outcome end-points are needed to further define its role.
Collapse
Affiliation(s)
- Suchi Grover
- Department of Cardiovascular Medicine, Discipline of Medicine, Flinders University of South Australia, Flinders Medical Centre, Australia
| | | | | |
Collapse
|
13
|
Chotenimitkhun R, Hundley WG. Pharmacological stress cardiovascular magnetic resonance. Postgrad Med 2011; 123:162-70. [PMID: 21566427 DOI: 10.3810/pgm.2011.05.2295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, cardiovascular magnetic resonance (CMR) has evolved into a cardiac stress testing modality that can be used to diagnose myocardial ischemia using intravenous dobutamine or vasodilator perfusion agents such as adenosine or dipyridamole. Because CMR produces high-resolution tomographic images of the human heart in multiple imaging planes, it has become a highly attractive noninvasive testing modality for those suspected of having myocardial ischemia. The purpose of this article is to review the clinical, diagnostic, and prognostic utility of stress CMR testing for patients with (or suspected of having) coronary artery disease.
Collapse
Affiliation(s)
- Runyawan Chotenimitkhun
- Department of Internal Medicine, Cardiology Section, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1045, USA
| | | |
Collapse
|