1
|
Lingscheid T, Kurth F, Stegemann MS, Clerinx J, Calleri G, Rothe C, Angheben A, Gobbi F, Bisoffi Z, Hamer DH, Libman M, Hatz C, Zoller T. Outpatient treatment of imported uncomplicated Plasmodium falciparum malaria: results from a survey among TropNet and GeoSentinel experts for tropical medicine. J Travel Med 2020; 27:5842102. [PMID: 32442249 DOI: 10.1093/jtm/taaa082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Plasmodium falciparum malaria (P.f. malaria) is frequently imported to non-endemic countries. Recommendations on outpatient treatment differ largely due to differences in country-level guidelines and even between tropical medicine referral centres within the same country. METHODS This survey among experts from TropNet or GeoSentinel referral centres for tropical medicine outside malaria endemic areas investigated common practices in P.f. malaria management, selection criteria for outpatient management and diagnostic procedures as a first step for developing a future common and evidence-based approach. RESULTS A total of 44 referral centres participated. Most of the centres are located in Europe (n = 37). Overall, 27 centres (61%) treat uncomplicated P.f. malaria patients as outpatients, of which eight centres (18%) reported treating ≥75% of patients on an outpatient basis. Seventeen centres (39%) reported treating patients only as inpatients. No single criterion stands out for the decision regarding outpatient treatment, but three groups of factors were identified: (i) clinical criteria including laboratory parameters, clinical condition and tolerance of oral medication; (ii) factors such as patient compliance, reachability by phone and support at home and (iii) patient origin and place of residence as a proxy for possible underlying semi-immunity. The threshold parasitaemia for outpatient treatment varied from 0.1 to 5% with a median of 2%. A median of 0.5% of outpatients were admitted during follow-up. During the last 10 years, 33 complications were reported by nine of the 27 centres and three deaths by one centre. CONCLUSION This study gives insight into the heterogeneous management of P.f. malaria patients outside endemic regions. Although there is no consensus among experts, the majority of centres includes outpatient treatment in their clinical routine. However, the lack of evidence-based criteria and established safety for this approach shows the need for prospective studies to define and evaluate criteria and practices for safe outpatient management.
Collapse
Affiliation(s)
- Tilman Lingscheid
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam S Stegemann
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jan Clerinx
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Calleri
- Travel Medicine Unit, Department of Infectious Diseases, Amedeo di Savoia Hospital-ASLTO2, Turin, Italy
| | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andrea Angheben
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health and Section of Infectious Diseases, Boston, MA, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael Libman
- J.D. MacLean Centre for Tropical Diseases, McGill University Health Centre, Montreal, Canada
| | - Christoph Hatz
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Infectious Diseases, Cantonal Hospital, St. Gallen, Switzerland
| | - Thomas Zoller
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Epelboin L, Rapp C, Faucher JF, Méchaï F, Bottieau E, Matheron S, Malvy D, Caumes E. Management and treatment of uncomplicated imported malaria in adults. Update of the French malaria clinical guidelines. Med Mal Infect 2019; 50:194-212. [PMID: 31493957 DOI: 10.1016/j.medmal.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- L Epelboin
- Unité des maladies infectieuses et tropicales, centre hospitalier Andrée Rosemon, avenue des Flamboyants, 97300 Cayenne, French Guiana.
| | - C Rapp
- Hôpital Américain de Paris, 63, boulevard Victor Hugo, 92200 Neuilly, France; Hôpital d'instruction des armées Bégin, 69, avenue de Paris, 94163 Saint-Mandé, France
| | - J F Faucher
- Service des maladies infectieuses et tropicales and UMR 1094, CHU Dupuytren 2, 87042 Limoges, France
| | - F Méchaï
- Service des maladies infectieuses et tropicales, hôpital Avicenne, 93000 Bobigny, France
| | - E Bottieau
- Institute of tropical medicine, Antwerp, Belgium
| | - S Matheron
- Service des maladies infectieuses et tropicales, CHU Bichat - Claude Bernard, 75018 Paris, France
| | - D Malvy
- Service des maladies infectieuses et tropicales, CHU Bordeaux, 33000 Bordeaux France
| | - E Caumes
- Hôpital Pitié-Salpêtrière, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
3
|
Affiliation(s)
- Daniel R Stevenson
- Clinical Fellow, Department of Infectious Diseases and Tropical Medicine, Northwick Park Hospital, London HA1 3UJ
| | - Tumena Corrah
- Infectious Disease Consultant and Acute Medicine, Department of Infectious Diseases and Tropical Medicine, Northwick Park Hospital, London
| |
Collapse
|
4
|
The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles. Malar J 2016; 15:524. [PMID: 27806725 PMCID: PMC5093925 DOI: 10.1186/s12936-016-1577-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/28/2016] [Indexed: 11/27/2022] Open
Abstract
Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.
Collapse
|
5
|
Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJM, Chiodini PL. UK malaria treatment guidelines 2016. J Infect 2016; 72:635-649. [PMID: 26880088 PMCID: PMC7132403 DOI: 10.1016/j.jinf.2016.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/15/2022]
Abstract
1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9. Most patients treated for P. falciparum malaria should be admitted to hospital for at least 24 h as patients can deteriorate suddenly, especially early in the course of treatment. In specialised units seeing large numbers of patients, outpatient treatment may be considered if specific protocols for patient selection and follow up are in place. 10. Uncomplicated P. falciparum malaria should be treated with an artemisinin combination therapy (Grade 1A). Artemether-lumefantrine (Riamet(®)) is the drug of choice (Grade 2C) and dihydroartemisinin-piperaquine (Eurartesim(®)) is an alternative. Quinine or atovaquone-proguanil (Malarone(®)) can be used if an ACT is not available. Quinine is highly effective but poorly-tolerated in prolonged treatment and should be used in combination with an additional drug, usually oral doxycycline. 11. Severe falciparum malaria, or infections complicated by a relatively high parasite count (more than 2% of red blood cells parasitized) should be treated with intravenous therapy until the patient is well enough to continue with oral treatment. Severe malaria is a rare complication of P. vivax or P. knowlesi infection and also requires parenteral therapy. 12. The treatment of choice for severe or complicated malaria in adults and children is intravenous artesunate (Grade 1A). Intravenous artesunate is unlicensed in the EU but is available in many centres. The alternative is intravenous quinine, which should be started immediately if artesunate is not available (Grade 1A). Patients treated with intravenous quinine require careful monitoring for hypoglycemia. 13. Patients with severe or complicated malaria should be managed in a high-dependency or intensive care environment. They may require haemodynamic support and management of: acute respiratory distress syndrome, disseminated intravascular coagulation, acute kidney injury, seizures, and severe intercurrent infections including Gram-negative bacteraemia/septicaemia. 14. Children with severe malaria should also be treated with empirical broad spectrum antibiotics until bacterial infection can be excluded (Grade 1B). 15. Haemolysis occurs in approximately 10-15% patients following intravenous artesunate treatment. Haemoglobin concentrations should be checked approximately 14 days following treatment in those treated with IV artemisinins (Grade 2C). 16. Falciparum malaria in pregnancy is more likely to be complicated: the placenta contains high levels of parasites, stillbirth or early delivery may occur and diagnosis can be difficult if parasites are concentrated in the placenta and scanty in the blood. 17. Uncomplicated falciparum malaria in the second and third trimester of pregnancy should be treated with artemether-lumefantrine (Grade 2B). Uncomplicated falciparum malaria in the first trimester of pregnancy should usually be treated with quinine and clindamycin but specialist advice should be sought. Severe malaria in any trimester of pregnancy should be treated as for any other patient with artesunate preferred over quinine (Grade 1C). 18. Children with uncomplicated malaria should be treated with an ACT (artemether-lumefantrine or dihydroartemisinin-piperaquine) as first line treatment (Grade 1A). Quinine with doxycycline or clindamycin, or atovaquone-proguanil at appropriate doses for weight can also be used. Doxycycline should not be given to children under 12 years. 19. Either an oral ACT or chloroquine can be used for the treatment of non-falciparum malaria. An oral ACT is preferred for a mixed infection, if there is uncertainty about the infecting species, or for P. vivax infection from areas where chloroquine resistance is common (Grade 1B). 20. Dormant parasites (hypnozoites) persist in the liver after treatment of P. vivax or P. ovale infection: the only currently effective drug for eradication of hypnozoites is primaquine (1A). Primaquine is more effective at preventing relapse if taken at the same time as chloroquine (Grade 1C). 21. Primaquine should be avoided or given with caution under expert supervision in patients with Glucose-6-phosphate dehydrogenase deficiency (G6PD), in whom it may cause severe haemolysis. 22. Primaquine (for eradication of P. vivax or P. ovale hypnozoites) is contraindicated in pregnancy and when breastfeeding (until the G6PD status of child is known); after initial treatment for these infections a pregnant woman should take weekly chloroquine prophylaxis until after delivery or cessation of breastfeeding when hypnozoite eradication can be considered. 23. An acute attack of malaria does not confer protection from future attacks: individuals who have had malaria should take effective anti-mosquito precautions and chemoprophylaxis during future visits to endemic areas.
Collapse
Affiliation(s)
- David G Lalloo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Delane Shingadia
- Department of Infectious Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| | - David J Bell
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Nicholas J Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christopher J M Whitty
- Hospital for Tropical Diseases, Mortimer Market Centre, Capper Street off Tottenham Court Road, London WC1E 6AU, UK
| | - Peter L Chiodini
- Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
6
|
Francis BC, Gonzalo X, Duggineni S, Thomas JM, NicFhogartaigh C, Babiker ZOE. Epidemiology and clinical features of imported malaria in East London. J Travel Med 2016; 23:taw060. [PMID: 27601534 DOI: 10.1093/jtm/taw060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/11/2016] [Indexed: 11/14/2022]
Abstract
BACKGROUND Malaria is the most common imported tropical disease in the United Kingdom (UK). The overall mortality is low but inter-regional differences have been observed. METHODS We conducted a 2-year retrospective review of clinical and laboratory records of patients with malaria attending three acute hospitals in East London from 1 April 2013 through 31 March 2015. Epidemiological and clinical characteristics of imported malaria were described and risk factors associated with severe falciparum malaria were explored. RESULTS In total, 133 patients with laboratory-confirmed malaria were identified including three requiring critical care admission but no deaths. The median age at presentation was 41 years (IQR 30-50). The majority of patients were males (64.7%, 86/133) and had Black or Black British ethnicity (67.5%, 79/117). West Africa was the most frequent region of travel (70.4%, 76/108). Chemoprophylaxis use was poor (25.3%, 20/79). The interval between arriving in the UK and presenting to hospital was short (median 10 days; IQR 5-15.5, n = 84). July-September was the peak season of presentation (34.6%, 46/133). Plasmodium falciparum was the commonest species (76.7%, 102/133) and 31.4% (32/102) of these patients had parasitaemia >2%. Severe falciparum malaria was documented in 36.3% (37/102) of patients and the October-March season presentation was associated with an increased risk of severity (OR 3.00; 95% CI 1.30-6.93). Black patients appeared to have reduced risk of severe falciparum malaria (OR 0.46; 95% CI 0.16-1.35) but this was not statistically significant. HIV sero-status was determined in only 27.1% (36/133) of cases. Only 8.5% (10/117) of all malaria patients were treated as outpatients. CONCLUSION Clinicians need to raise awareness on malaria prevention strategies, improve rates of HIV testing in tropical travellers, and familiarise themselves with ambulatory management of malaria. The relationship between season of presentation, ethnicity and severity of falciparum malaria should be explored further.
Collapse
Affiliation(s)
- Benjamin C Francis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Ximena Gonzalo
- Department of Infection, Royal London Hospital, Barts Health NHS Trust, 80 Newark Street, London, E1 2ES, UK
| | - Sirisha Duggineni
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Janice M Thomas
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Caoimhe NicFhogartaigh
- Department of Infection, Royal London Hospital, Barts Health NHS Trust, 80 Newark Street, London, E1 2ES, UK
| | - Zahir Osman Eltahir Babiker
- Department of Infection, Royal London Hospital, Barts Health NHS Trust, 80 Newark Street, London, E1 2ES, UK
| |
Collapse
|