1
|
Chen W, Chen M, Chen S, Wang S, Huang Z, Zhang L, Wu J, Peng W, Li H, Wen F. Decellularization of fish tissues for tissue engineering and regenerative medicine applications. Regen Biomater 2024; 12:rbae138. [PMID: 39776859 PMCID: PMC11703550 DOI: 10.1093/rb/rbae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates in situ neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications. Recently, there has been a growing interest in the decellularization of fish tissues because of the abundance of sources, less religious constraints and risks of zoonosis transmission between mammals. In this review, we provide a complete overview of the state-of-the-art decellularization of fish tissues, including the organs and methods used to prepare acellular tissues. We enumerated common decellularized fish tissues from various fish organs, such as skin, scale, bladder, cartilage, heart and brain, and elaborated their different processing methods and tissue engineering applications. Furthermore, we presented the perspectives of (i) the future development direction of fish tissue decellularization technology, (ii) expanding the sources of decellularized tissue and (iii) innovating decellularized tissue bio-inks for 3D bioprinting to unleash the great potential of decellularized tissue in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenhui Chen
- Yuhuan People’s Hospital, Taizhou, Zhejiang 317600, China
| | - Mengshi Chen
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Siyi Chen
- Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China
| | - Siran Wang
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zijin Huang
- Yuhuan People’s Hospital, Taizhou, Zhejiang 317600, China
| | - Lining Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang 325005, China
| | - Jiaming Wu
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Huaqiong Li
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Feng Wen
- Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China
- Zhejiang Engineering Research Centre for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Hu X, Chen J, Yang S, Zhang Z, Wu H, He J, Qin L, Cao J, Xiong C, Li K, Liu X, Qian Z. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403681. [PMID: 38804867 DOI: 10.1002/smll.202403681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Infected bone defects are one of the most challenging problems in the treatment of bone defects due to the high antibiotic failure rate and the lack of ideal bone grafts. In this paper, inspired by clinical bone cement filling treatment, α-c phosphate (α-TCP) with self-curing properties is composited with β-tricalcium phosphate (β-TCP) and constructed a bionic cancellous bone scaffolding system α/β-tricalcium phosphate (α/β-TCP) by low-temperature 3D printing, and gelatin is preserved inside the scaffolds as an organic phase, and later loaded with a metal-polyphenol network structure of tea polyphenol-magnesium (TP-Mg) nanoparticles. The scaffolds mimic the structure and components of cancellous bone with high mechanical strength (>100 MPa) based on α-TCP self-curing properties through low-temperature 3D printing. Meanwhile, the scaffolds loaded with TP-Mg exhibit significant inhibition of Staphylococcus aureus (S.aureus) and promote the transition of macrophages from M1 pro-inflammatory to M2 anti-inflammatory phenotype. In addition, the composite scaffold also exhibits excellent bone-enhancing effects based on the synergistic effect of Mg2+ and Ca2+. In this study, a multifunctional ceramic scaffold (α/β-TCP@TP-Mg) that integrates anti-inflammatory, antibacterial, and osteoinduction is constructed, which promotes late bone regenerative healing while modulating the early microenvironment of infected bone defects, has a promising application in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Zhen Zhang
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Jian He
- College of Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan, 611730, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
5
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
6
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
7
|
Han L, Ji J, Zhang C, Sun B, Chao Z, Zhu H, Gao X, Ren J, Ji F, Ma L, Jia L. One-Step Assembly of Versatile Multifunctional Coatings Based on Host-Guest and Polyphenol Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206943. [PMID: 36755211 DOI: 10.1002/smll.202206943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Indexed: 06/02/2023]
Abstract
Developing a facile, efficient, and versatile polyphenol coating strategy and exploring its novel applications are of great significance in the fields of material surfaces and interfaces. Herein, a one-step assembly strategy for constructing novel tannic acid (TA) coatings via a solvent evaporation method is reported using TA and polycyclodextrin (PCD) particles (TPP). TPP with a high phenolic group activity of 88% integrates the advantages of host-guest and polyphenol chemistry. The former can drive TPP dynamically assemble into a large and collective aggregation activated by high temperature or density, and the latter provides excellent adhesion properties to substrates (0.9 mg cm-2 ). TPP can assemble into a coating (TPC) rapidly on various substrates within 1 h at 37 °C while with a high availability of feed TPP (≈90%). The resulting TPC is not only high-temperature steam-sensitive for use as an anti-fake mask but also pH-sensitive for transforming into a free-standing film under physiological conditions. Moreover, various metal ions and functional particles can incorporate into TPC to extend its versatile properties including antibacterial activity, enhanced stability, and conductivity. This work expands the polyphenol coating strategy and builds up a one-step and efficient preparation platform of polyphenol coating for multiapplication prospects in various fields.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiaxin Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingjian Sun
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hua Zhu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liming Ma
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|