1
|
Golebiowska AA, Intravaia JT, Sathe V, Kumbar SG, Nukavarapu SP. Engineered Osteochondral Scaffolds with Bioactive Cartilage Zone for Enhanced Articular Cartilage Regeneration. Ann Biomed Eng 2024:10.1007/s10439-024-03655-1. [PMID: 39602036 DOI: 10.1007/s10439-024-03655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Despite progress, osteochondral (OC) tissue engineering strategies face limitations in terms of articular cartilage layer development and its integration with the underlying bone tissue. The main objective of this study is to develop a zonal OC scaffold with native biochemical signaling in the cartilage zone to promote articular cartilage development devoid of cells and growth factors. Herein, we report the development and in vivo assessment of a novel gradient and zonal-structured scaffold for OC defect regeneration. The scaffold system is composed of a mechanically supportive 3D-printed template containing decellularized cartilage extracellular matrix (ECM) biomaterial in the cartilage zone that possesses bioactive characteristics, such as chemotactic activity and native tissue biochemical composition. OC scaffolds with a bioactive cartilage zone were implanted in vivo in a rabbit osteochondral defect model and assessed for gross morphology, matrix deposition, cellular distribution, and overall tissue regeneration. The scaffold system supported recruitment and infiltration of host cells into the cartilage zone of the graft, which led to increased ECM deposition and physiologically relevant articular cartilage tissue formation. Semi-quantitative ICRS scoring (overall score double for OC scaffold with bioactive cartilage zone compared to PLA scaffold) further confirm the bioactive scaffold enhanced articular cartilage engineering. This strategy of designing bioactive scaffolds to promote endogenous cellular infiltration can be a much simpler and effective approach for OC tissue repair and regeneration.
Collapse
Affiliation(s)
- Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Jonathon T Intravaia
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Vinayak Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA.
| |
Collapse
|
2
|
Effanga VE, Akilbekova D, Mukasheva F, Zhao X, Kalyon DM, Erisken C. In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface. Gels 2024; 10:745. [PMID: 39590101 PMCID: PMC11593412 DOI: 10.3390/gels10110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Osteochondral (OC) tissue plays a crucial role due to its ability to connect bone and cartilage tissues. To address the complexity of structure and functionality at the bone-cartilage interface, relevant to the presence of the tidemark as a critical element at the bone-cartilage boundary, we fabricated graded scaffolds through sequential 3D printing. The scaffold's bottom layer was based on a gelatin/oxidized alginate mixture enriched with hydroxyapatite (HAp) to create a rougher surface and larger pores to promote osteogenesis. In contrast, the upper layer was engineered to have smaller pores and aimed to promote cartilage tissue formation and mimic the physical properties of the cartilage. An electrospun ε-polycaprolactone (PCL) membrane with micrometer-range pores was incorporated between the layers to replicate the function of tidemark-a barrier to prevent vascularization of cartilage from subchondral bone tissue. In vitro cell studies confirmed the viability of the cells on the layers of the scaffolds and the ability of PCL mesh to prevent cellular migration. The fabricated scaffolds were thoroughly characterized, and their mechanical properties were compared to native OC tissue, demonstrating suitability for OC tissue engineering and graft modeling. The distance of gradient of mineral concentration was found to be 151 µm for grafts and the native OC interface.
Collapse
Affiliation(s)
- Victoria Effiong Effanga
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan; (V.E.E.); (D.A.); (F.M.)
| | - Dana Akilbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan; (V.E.E.); (D.A.); (F.M.)
| | - Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan; (V.E.E.); (D.A.); (F.M.)
| | - Xiao Zhao
- Department of Chemical Engineering and Material Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (X.Z.); (D.M.K.)
| | - Dilhan M. Kalyon
- Department of Chemical Engineering and Material Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (X.Z.); (D.M.K.)
| | - Cevat Erisken
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan; (V.E.E.); (D.A.); (F.M.)
| |
Collapse
|
3
|
Mendibil U, Lópiz-Morales Y, Arnaiz B, Ruiz-Hernández R, Martín P, Di-Silvio D, Garcia-Urquia N, Elortza F, Azkargorta M, Olalde B, Abarrategi A. Development of bioactive solid-foam scaffolds from decellularized cartilage with chondrogenic and osteogenic properties. Mater Today Bio 2024; 28:101228. [PMID: 39296356 PMCID: PMC11408866 DOI: 10.1016/j.mtbio.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Full osteochondral regeneration remains a major clinical challenge. Among other experimental cartilage regenerative approaches, decellularized cartilage (DCC) is considered a promising material for generating potentially implantable scaffolds useful as cartilage repair strategy. In this work, we focus on screening and comparing different decellularization methods, aiming to generate DCC potentially useful in biomedical context, and therefore, with biological activity and functional properties in terms of induction of differentiation and regeneration. Data indicates that enzymatic and detergents-based decellularization methods differentially affect ECM components, and that it has consequences in further biological behavior. SDS-treated DCC powder is not useful to be further processed in 2D or 3D structures, because these structures tend to rapidly solubilize, or disaggregate, in physiologic media conditions. Conversely, Trypsin-treated DCC powders can be processed to mechanically stable 2D films and 3D solid-foam scaffolds, presumably due to partial digestion of collagens during decellularization, which would ease crosslinking at DCC during solubilization and processing. In vitro cell culture studies indicate that these structures are biocompatible and induce and potentiate chondrogenic differentiation. In vivo implantation of DCC derived 3D porous scaffolds in rabbit osteochondral defects induce subchondral bone regeneration and fibrocartilage tissue formation after implantation. Therefore, this work defines an optimal cartilage tissue decellularization protocol able to generate DCC powders processable to biocompatible and bioactive 2D and 3D structures. These structures are useful for in vitro cartilage research and in vivo subchondral bone regeneration, while hyaline cartilage regeneration with DCC alone as implantable material remains elusive.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | | | - Blanca Arnaiz
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Desiré Di-Silvio
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| |
Collapse
|
4
|
Nordberg RC, Wen DH, Wang D, Hu JC, Athanasiou KA. Challenges and recent advances in engineering the osteochondral interface. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100546. [PMID: 39494386 PMCID: PMC11526383 DOI: 10.1016/j.cobme.2024.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Due to the high incidence of cartilage-related pathologies such as focal defects and osteoarthritis, strategies are needed to restore the structure and function of osteochondral tissue. Articular cartilage and bone have distinctly different properties, rendering challenging the engineering of a robust interface that reduces stress concentrations and delamination. The osteochondral interface, which consists of a tidemark, calcified cartilage, cement line, and surrounding tissues, has a unique structure and function, but there is a dearth of quantitative data to describe it. Elucidating the structure-function relationships through characterization will be essential in defining design criteria for tissue engineering. Osteochondral engineering has used scaffold-based methods that, for example, use polymers in conjunction with ceramics. Excitingly, scaffold-free methods are emerging for engineering the articular cartilage layer, which can be interfaced with an underlying bone substrate. Critical must be the objective of designing an interface that displays mechanics robust enough to withstand the native environment.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Deborah H. Wen
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Zhu J, Luo Q, Cao T, Yang G, Xiao L. Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment. Regen Biomater 2024; 11:rbae064. [PMID: 38903559 PMCID: PMC11187498 DOI: 10.1093/rb/rbae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Cartilage tissues possess an extremely limited capacity for self-repair, and current clinical surgical approaches for treating articular cartilage defects can only provide short-term relief. Despite significant advances in the field of cartilage tissue engineering, avoiding secondary damage caused by invasive surgical procedures remains a challenge. In this study, injectable cartilage microtissues were developed through 3D culture of rat bone marrow mesenchymal stem cells (BMSCs) within porous gelatin microcarriers (GMs) and induced differentiation. These microtissues were then injected for the purpose of treating cartilage defects in vivo, via a minimally invasive approach. GMs were found to be noncytotoxic and favorable for cell attachment, proliferation and migration evaluated with BMSCs. Moreover, cartilage microtissues with a considerable number of cells and abundant extracellular matrix components were obtained from BMSC-laden GMs after induction differentiation culture for 28 days. Notably, ATDC5 cells were complementally tested to verify that the GMs were conducive to cell attachment, proliferation, migration and chondrogenic differentiation. The microtissues obtained from BMSC-laden GMs were then injected into articular cartilage defect areas in rats and achieved superior performance in alleviating inflammation and repairing cartilage. These findings suggest that the use of injectable cartilage microtissues in this study may hold promise for enhancing the long-term outcomes of cartilage defect treatments while minimizing the risk of secondary damage associated with traditional surgical techniques.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun YatSen University, Guangzhou 510070, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Wu Z, Yao H, Sun H, Gu Z, Hu X, Yang J, Shi J, Yang H, Dai J, Chong H, Wang DA, Lin L, Zhang W. Enhanced hyaline cartilage formation and continuous osteochondral regeneration via 3D-Printed heterogeneous hydrogel with multi-crosslinking inks. Mater Today Bio 2024; 26:101080. [PMID: 38757056 PMCID: PMC11097081 DOI: 10.1016/j.mtbio.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The unique gradient structure and complex composition of osteochondral tissue pose significant challenges in defect regeneration. Restoration of tissue heterogeneity while maintaining hyaline cartilage components has been a difficulty of an osteochondral tissue graft. A novel class of multi-crosslinked polysaccharide-based three-dimensional (3D) printing inks, including decellularized natural cartilage (dNC) and nano-hydroxyapatite, was designed to create a gradient scaffold with a robust interface-binding force. Herein, we report combining a dual-nozzle cross-printing technology and a gradient crosslinking method to create the scaffolds, demonstrating stable mechanical properties and heterogeneous bilayer structures. Biofunctional assessments revealed the remarkable regenerative effects of the scaffold, manifesting three orders of magnitude of mRNA upregulation during chondrogenesis and the formation of pure hyaline cartilage. Transcriptomics of the regeneration site in vivo and scaffold cell interaction tests in vitro showed that printed porous multilayer scaffolds could form the correct tissue structure for cell migration. More importantly, polysaccharides with dNC provided a hydrophilic microenvironment. The microenvironment is crucial in osteochondral regeneration because it could guide the regenerated cartilage to ensure the hyaline phenotype.
Collapse
Affiliation(s)
- Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Haidi Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Zehao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Jian Yang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Haojun Yang
- The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213004, PR China
| | - Jihang Dai
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Liwei Lin
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Muthu S. Beginning of the era of Organ-on-Chip models in osteoarthritis research. J Clin Orthop Trauma 2024; 52:102422. [PMID: 38708089 PMCID: PMC11067495 DOI: 10.1016/j.jcot.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by the progressive breakdown of joint cartilage and underlying bone, affecting millions globally. Traditional research models, including in-vitro cell cultures and in-vivo animal studies, have provided valuable insights but exhibit limitations in replicating the complex human joint environment. This review article focuses on the transformative role of Organ-on-Chip (OoC) and Joint-on-Chip (JoC) technologies in OA research. OoC and JoC models, rooted in microfluidics, integrate cellular biology with engineered environments to create dynamic, physiologically relevant models that closely resemble human tissues and organs. These models enable an accurate depiction of pathogenesis, offering deeper insights into molecular and cellular mechanisms driving the disease. This review explores the evolution of OoC technology in OA research, highlighting its contributions to disease modeling, therapeutic discovery, and personalized medicine. It delves into the design concepts, fabrication techniques, and integration strategies of joint components in JoC models, emphasizing their role in accurately mimicking joint tissues and facilitating the study of intricate cellular interactions. The article also discusses the significant advancements made in OA research through published JoC models and projects the future scope of these technologies, including their potential in personalized medicine and high-throughput drug screening. The evolution of JoC models signifies a paradigm shift in OA research, offering a promising path toward more effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, 609602, Puducherry, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| |
Collapse
|
9
|
Li S, Niu D, Fang H, Chen Y, Li J, Zhang K, Yin J, Fu P. Tissue adhesive, ROS scavenging and injectable PRP-based 'plasticine' for promoting cartilage repair. Regen Biomater 2023; 11:rbad104. [PMID: 38235061 PMCID: PMC10793072 DOI: 10.1093/rb/rbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024] Open
Abstract
Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 μm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Shiao Li
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
10
|
Pan Z, Hou M, Zhang Y, Liu Y, Tian X, Hu X, Ge X, Zhao Z, Liu T, Xu Y, Yang H, Liu H, Zhu X, He F. Incorporation of kartogenin and silk fibroin scaffolds promotes rat articular cartilage regeneration through enhancement of antioxidant functions. Regen Biomater 2023; 10:rbad074. [PMID: 37719927 PMCID: PMC10503267 DOI: 10.1093/rb/rbad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Treating articular cartilage defects in patients remains a challenging task due to the absence of blood vessels within the cartilage tissue. The regenerative potential is further compromised by an imbalance between anabolism and catabolism, induced by elevated levels of reactive oxygen species. However, the advent of tissue engineering introduces a promising strategy for cartilage regeneration, offering viable solutions such as mechanical support and controlled release of chondrogenic molecules or cytokines. In this study, we developed an antioxidant scaffold by incorporating natural silk fibroin (SF) and kartogenin (KGN)-loaded liposomes (SF-Lipo@KGN). The scaffold demonstrated appropriate pore size, connectivity, and water absorption and the sustained release of KGN was achieved through the encapsulation of liposomes. In vitro experiments revealed that the SF-Lipo@KGN scaffolds exhibited excellent biocompatibility, as evidenced by enhanced cell adhesion, migration, and proliferation of chondrocytes. The SF-Lipo@KGN scaffolds were found to stimulate cartilage matrix synthesis through the activation of the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 antioxidant signaling pathway. In vivo experiments demonstrated the effective promotion of articular cartilage regeneration by the SF-Lipo@KGN scaffolds, which enhanced extracellular matrix anabolism and restored the intrinsic redox homeostasis. Overall, this study successfully developed biomimetic KGN-loaded scaffolds that restore cartilage redox homeostasis, indicating promising prospects for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
- Department of Orthopaedics, People's Hospital of Zhenhai District (Ningbo No.7 Hospital), Ningbo 315202, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xiayu Hu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xiaoyang Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| |
Collapse
|