1
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
2
|
Chen J, Hao Z, Li H, Wang J, Chen T, Wang Y, Shi G, Wang J, Wang Z, Zhang Z, Li J. Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies. Theranostics 2024; 14:3859-3899. [PMID: 38994021 PMCID: PMC11234277 DOI: 10.7150/thno.96516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zepu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zheyuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
3
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
4
|
Guo R, Kan YC, Xu Y, Han LY, Bu WH, Han LX, Qi YY, Chu JJ. Preparation and efficacy of antibacterial methacrylate monomer-based polymethyl methacrylate bone cement containing N-halamine compounds. Front Bioeng Biotechnol 2024; 12:1414005. [PMID: 38863494 PMCID: PMC11165117 DOI: 10.3389/fbioe.2024.1414005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Our objective in this study was to prepare a novel type of polymethyl methacrylate (PMMA) bone cement, analyze its material properties, and evaluate its safety and antibacterial efficacy. Methods A halamine compound methacrylate antibacterial PMMA bone cement containing an N-Cl bond structure was formulated, and its material characterization was determined with Fourier transform infrared spectroscopy (FT-IR) and 1H-NMR. The antibacterial properties of the material were studied using contact bacteriostasis and releasing-type bacteriostasis experiments. Finally, in vitro and in vivo biocompatibility experiments were performed to analyze the toxic effects of the material on mice and embryonic osteoblast precursor cells (MC3T3-E1). Results Incorporation of the antibacterial methacrylate monomer with the N-halamine compound in the new antibacterial PMMA bone cement significantly increased its contact and releasing-type bacteriostatic performance against Staphylococcus aureus. Notably, at 20% and 25% additions of N-halamine compound, the contact and releasing-type bacteriostasis rates of bone cement samples reached 100% (p < 0.001). Furthermore, the new antibacterial bone cement containing 5%, 10%, and 15% N-halamine compounds showed good biocompatibility in vitro and in vivo. Conclusion In this study, we found that the novel antibacterial PMMA bone cement with N-halamine compound methacrylate demonstrated good contact and releasing-type bacteriostatic properties against S. aureus. In particular, bone cement containing a 15% N-halamine monomer exhibited strong antibacterial properties and good in vitro and in vivo biocompatibility.
Collapse
Affiliation(s)
- Rui Guo
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yang Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lu-Yang Han
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Wen-Han Bu
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Long-Xu Han
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yin-Yu Qi
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Gong C, Yang J, Zhang X, Wang X, Wei Z, Huang X, Guo W. Surface functionalization of calcium magnesium phosphate cements with alginate sodium for enhanced bone regeneration via TRPM7/PI3K/Akt signaling pathway. Int J Biol Macromol 2024; 266:130998. [PMID: 38521332 DOI: 10.1016/j.ijbiomac.2024.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Although calcium‑magnesium phosphate cements (CMPCs) have been widely applied to treating critical-size bone defects, their repair efficiency is unsatisfactory owing to their weak surface bioactivity and uncontrolled ion release. In this study, we lyophilized alginate sodium (AS) as a coating onto HAp/K-struvite (H@KSv) to develop AS/HAp/K-struvite (AH@KSv), which promotes bone regeneration. The compressive strength and hydrophilicity of AH@KSv significantly improved, leading to enhanced cell adhesion in vitro. Importantly, the SA coating enables continuous ions release of Mg2+ and Ca2+, finally leading to enhanced osteogenesis in vitro/vivo and different patterns of new bone ingrowth in vivo. Furthermore, these composites increased the expression levels of biomarkers of the TRPM7/PI3K/Akt signaling pathway via an equilibrium effect of Mg2+ to Ca2+. In conclusion, our study provides novel insights into the mechanisms of Mg-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiping Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zicheng Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinghan Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Zhang C, Cai X, Li M, Peng J, Mei J, Wang F, Zhang R, Zhou Y, Fang S, Xia D, Zhao J. Preclinical Evaluation of Bioactive Small Intestinal Submucosa-PMMA Bone Cement for Vertebral Augmentation. ACS Biomater Sci Eng 2024; 10:2398-2413. [PMID: 38477550 PMCID: PMC11005825 DOI: 10.1021/acsbiomaterials.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.
Collapse
Affiliation(s)
- Chi Zhang
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiongxiong Cai
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
| | - Mei Li
- Key
Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang
Province, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Jing Peng
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jin Mei
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Fangfang Wang
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Rui Zhang
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Yingjie Zhou
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Shuyu Fang
- Department
of Clinical Laboratory, The First Affiliated
Hospital of Ningbo University, Ningbo 315010, China
| | - Dongdong Xia
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
| | - Jiyuan Zhao
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|