1
|
Chen X, Li X, Xiao X, Long R, Chen B, Lin Y, Wang S, Liu Y. Photothermal and Antibacterial PDA@Ag/SerMA Microneedles for Promoting Diabetic Wound Repair. ACS APPLIED BIO MATERIALS 2024; 7:6603-6616. [PMID: 39250682 DOI: 10.1021/acsabm.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Diabetic foot ulcer (DFU) is a common and severe complication of diabetes characterized by wound neuropathy, ischemia, and susceptibility to infection, making its treatment difficult. Dressings are commonly used in treating diabetic wounds; however, they have disadvantages, including lack of flexibility and mechanical strength, lack of coagulation activity, resistance to biodegradation, and low drug delivery efficiency. Developing more effective strategies for diabetic wound treatment has become a new focus. Microneedles (MN) can be used as a drug delivery platform for DFU wounds, allowing safe, effective, painless and minimally invasive medication administration through the skin. Herein, PDA@Ag/SerMA microneedles were prepared by combining the photothermal properties of polydopamine (PDA), the antimicrobial properties of argentum (Ag), and the ability of sericin methacryloyl (SerMA) to promote cell mitosis to accelerate wound healing and treat diabetic ulcer wounds. The results revealed that PDA@Ag/SerMA microneedles exhibited approximately 100% antimicrobial efficacy against Staphylococcus aureus and Escherichia coli under 808 nm near-infrared (NIR) irradiation. Furthermore, the wound healing rate of mice reached 95% within 12 days, which demonstrated the excellent antibacterial properties and wound healing efficacy of PDA@Ag/SerMA microneedles at cellular and animal levels, providing a potential solution for treating DFU.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuemei Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yi Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Li X, Sun Y, Wang S, Si C, Li H, Chang B. A 3-Dimensional Scaffolding System Recapitulates the Hierarchical Osteon Structure. ACS OMEGA 2024; 9:41368-41377. [PMID: 39398190 PMCID: PMC11465375 DOI: 10.1021/acsomega.4c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
The bone is composed of solid cortical bone and honeycomb-like trabecular bone. Although the cortical bone provides the substantial mechanical strength of the bone, few studies have focused on its regeneration. As the structural and functional units of the cortical bone, osteons play critical roles in bone turnover. Composed of osteocytes, lamellae, lacunocanalicular network, and Haversian canals, osteons exhibit a delicate and hierarchical architecture. Studies have attempted to reconstruct the osteonal structure with artificial approaches; however, hardly the four elements were recapitulated simultaneously. In this work, a series of bioengineering techniques, including electrospinning, micropatterning, and laser-directed microfabrication, were employed to develop a three-dimensional scaffolding system, which successfully recapitulated the osteon structure in vitro. The physiological morphology and bioactivity of osteocytes were emulated, the intercellular communications between osteocytes were identified, and the concentric lamellae and Haversian canals were simulated as well. This work constructed an in vivo-like platform for osteon study, providing convenience for exploring the interaction among the osteonal elements.
Collapse
Affiliation(s)
- Xiheng Li
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Yalu Sun
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Shuangshuang Wang
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Shenyang 110001, China
| | - Chao Si
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Huen Li
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| | - Bei Chang
- Hospital of Stomatology,
Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Soheilmoghaddam F, Hezaveh H, Rumble M, Cooper-White JJ. Driving Osteocytogenesis from Mesenchymal Stem Cells in Osteon-like Biomimetic Nanofibrous Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39044386 DOI: 10.1021/acsami.3c14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The treatment of critical-sized bone defects caused by tumor removal, skeletal injuries, or infections continues to pose a major clinical challenge. A popular potential alternative solution to autologous bone grafts is a tissue-engineered approach that utilizes the combination of mesenchymal stromal/stem cells (MSCs) with synthetic biomaterial scaffolds. This approach aims to support new bone formation by mimicking many of the biochemical and biophysical cues present within native bone. Regrettably, osteocyte cells, crucial for bone maturation and homeostasis, are rarely produced within MSC-seeded scaffolds, thereby restricting the development of fully mature cortical bone from these synthetic implants. In this work, we have constructed a multimodal scaffold by combining electrospun poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds with poly(ethylene glycol) (PEG)-based hydrogels that mimic the functional unit of cortical bone, osteon (osteon-mimetic) scaffolds. These scaffolds were decorated with a novel bone morphogenic protein-6 (BMP6) peptide (BMP6p) after our findings revealed that the BMP6p drives higher levels of Smad signaling than the full-length protein counterpart, soluble or when bound to the PEG hydrogel backbone. We show that our osteon-mimetic scaffolds, in presenting concentric layers of BMP6p-PEG hydrogel overlaid on MSC-seeded PLGA nanofibers, promoted the rapid formation of osteocyte-like cells with a phenotypic dendritic morphology, producing early osteocyte markers, including E11/gp38 (E11). Maturation of these osteocyte-like cells was further confirmed by the observation of significant dentin matrix protein 1 (DMP1) throughout our bilayered scaffolds after 3 weeks, even when cultured in a medium without dexamethasone (DEX) or any other osteogenic supplements. These results demonstrate that these osteon-mimetic scaffolds, in presenting biochemical and topographical cues reminiscent of the forming osteon, can drive the formation of osteocyte-like cells in vitro from hBMSCs without the need for any osteogenic factor media supplementation.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hadi Hezaveh
- Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
| | - Madeleine Rumble
- School of Chemical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
5
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
6
|
Zhou YH, Guo Y, Zhu JY, Tang CY, Zhao YQ, Zhou HD. Spheroid co-culture of BMSCs with osteocytes yields ring-shaped bone-like tissue that enhances alveolar bone regeneration. Sci Rep 2022; 12:14636. [PMID: 36030312 PMCID: PMC9420131 DOI: 10.1038/s41598-022-18675-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Oral and maxillofacial bone defects severely impair appearance and function, and bioactive materials are urgently needed for bone regeneration. Here, we spheroid co-cultured green fluorescent protein (GFP)-labeled bone marrow stromal cells (BMSCs) and osteocyte-like MLO-Y4 cells in different ratios (3:1, 2:1, 1:1, 1:2, 1:3) or as monoculture. Bone-like tissue was formed in the 3:1, 2:1, and 1:1 co-cultures and MLO-Y4 monoculture. We found a continuous dense calcium phosphate structure and spherical calcium phosphate similar to mouse femur with the 3:1, 2:1, and 1:1 co-cultures, along with GFP-positive osteocyte-like cells encircled by an osteoid-like matrix similar to cortical bone. Flake-like calcium phosphate, which is more mature than spherical calcium phosphate, was found with the 3:1 and 2:1 co-cultures. Phosphorus and calcium signals were highest with 3:1 co-culture, and this bone-like tissue was ring-shaped. In a murine tooth extraction model, implantation of the ring-shaped bone-like tissue yielded more bone mass, osteoid and mineralized bone, and collagen versus no implantation. This tissue fabricated by spheroid co-culturing BMSCs with osteocytes yields an internal structure and mineral composition similar to mouse femur and could promote bone formation and maturation, accelerating regeneration. These findings open the way to new strategies in bone tissue engineering.
Collapse
Affiliation(s)
- Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jia-Yu Zhu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chen-Yi Tang
- Department of Nutrition, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Sun X, Jiao X, Yang X, Ma J, Wang T, Jin W, Li W, Yang H, Mao Y, Gan Y, Zhou X, Li T, Li S, Chen X, Wang J. 3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration. Biofabrication 2022; 14. [PMID: 35417902 DOI: 10.1088/1758-5090/ac6700] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022]
Abstract
The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue--osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells (BMSCs) and bone morphogenetic protein-4 (BMP-4). Subsequently, endothelial progenitor cells (EPCs) were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis in vitro and prompted the new blood vessels and new bone formation in vivo. In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Xin Jiao
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Xue Yang
- College of Medicine, Southwest JiaoTong University, No. 111 2nd Ring Rd, Chengdu, 610031, CHINA
| | - Jie Ma
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Tianchang Wang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Wenjie Jin
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Wentao Li
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Han Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, CHINA
| | - Yuanqing Mao
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Yaokai Gan
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Xiaojun Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, CHINA
| | - Tao Li
- Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, CHINA
| | - Shuai Li
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| | - Xiaodong Chen
- Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, CHINA
| | - Jinwu Wang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200001, CHINA
| |
Collapse
|
8
|
Wu F, Yang J, Ke X, Ye S, Bao Z, Yang X, Zhong C, Shen M, Xu S, Zhang L, Gou Z, Yang G. Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds. Regen Biomater 2021; 9:rbab077. [PMID: 35480859 PMCID: PMC9039507 DOI: 10.1093/rb/rbab077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction. Many investigations have explored this relationship but lack integrating pore architectural features in a scaffold, hindering optimization of architectural parameters (geometry, size and curvature) to improve vascularization and consequently clinical outcomes. To address this challenge, we have developed an integrating design strategy to fabricate different pore architectures (cube, gyroid and hexagon) with different pore dimensions (∼350, 500 and 650 μm) in the silicate-based bioceramic scaffolds via digital light processing technique. The sintered scaffolds maintained high-fidelity pore architectures similar to the printing model. The hexagon- and gyroid-pore scaffolds exhibited the highest and lowest compressive strength (from 15 to 55 MPa), respectively, but the cube-pore scaffolds showed appreciable elastic modulus. Moreover, the gyroid-pore architecture contributed on a faster ion dissolution and mass decay in vitro. It is interesting that both μCT and histological analyses indicate vascularization efficiency was challenged even in the 650-μm pore region of hexagon-pore scaffolds within 2 weeks in rabbit models, but the gyroid-pore constructs indicated appreciable blood vessel networks even in the 350-μm pore region at 2 weeks and high-density blood vessels were uniformly invaded in the 500- and 650-μm pore at 4 weeks. Angiogenesis was facilitated in the cube-pore scaffolds in comparison with the hexagon-pore ones within 4 weeks. These studies demonstrate that the continuous pore wall curvature feature in gyroid-pore architecture is an important implication for biodegradation, vascular cell migration and vessel ingrowth in porous bioceramic scaffolds.
Collapse
Affiliation(s)
- Fanghui Wu
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui’an People’s Hospital, Rui’an 325200, China
| | - Jun Yang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui’an People’s Hospital, Rui’an 325200, China
| | - Xiurong Ke
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui’an People’s Hospital, Rui’an 325200, China
| | - Shuo Ye
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui’an People’s Hospital, Rui’an 325200, China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Cheng Zhong
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Miaoda Shen
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Sanzhong Xu
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Lei Zhang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui’an People’s Hospital, Rui’an 325200, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui’an People’s Hospital, Rui’an 325200, China
| |
Collapse
|
9
|
Liu B, Ma Z, Li J, Xie H, Wei X, Wang B, Tian S, Yang J, Yang L, Cheng L, Li L, Zhao D. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater 2021; 10:269-280. [PMID: 34901545 PMCID: PMC8636709 DOI: 10.1016/j.bioactmat.2021.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Metal plates have always been the gold standard in the clinic for internal fracture fixation due to their high strength advantages. However, high elastic modulus can cause stress shielding and lead to bone embrittlement. This study used an electron beam melting method to prepare personalized porous Ti6Al4V (pTi) bone plates. Then, chemical vapor deposition (CVD) technology coats tantalum (Ta) metal on the pTi bone plates. The prepared porous Ta-coated bone plate has an elastic modulus similar to cortical bone, and no stress shielding occurred. In vitro experiments showed that compared with pTi plates, Ta coating significantly enhances the attachment and proliferation of cells on the surface of the scaffold. To better evaluate the function of the Ta-coated bone plate, animal experiments were conducted using a coat tibia fracture model. Our results showed that the Ta-coated bone plate could effectively fix the fracture. Both imaging and histological analysis showed that the Ta-coated bone plate had prominent indirect binding of callus formation. Histological results showed that new bone grew at the interface and formed good osseointegration with the host bone. Therefore, this study provides an alternative to bio-functional Ta-coated bone plates with improved osseointegration and osteogenic functions for orthopaedic applications. Porous Ta coated bone plate has a low elastic modulus, which can avoid stress shielding. Porous Ta coated bone plate has excellent biocompatibility and can be permanently implanted in the body. Porous Ta coated bone plate has excellent osseointegration properties and can promote fracture healing.
Collapse
Affiliation(s)
- Baoyi Liu
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Zhijie Ma
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Junlei Li
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Hui Xie
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Xiaowei Wei
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Benjie Wang
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Simiao Tian
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Jiahui Yang
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Lei Yang
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Liangliang Cheng
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Lu Li
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| | - Dewei Zhao
- Orthopaedic of Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
10
|
Chang B, Liu X. Osteon: Structure, Turnover, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:261-278. [PMID: 33487116 DOI: 10.1089/ten.teb.2020.0322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone is composed of dense and solid cortical bone and honeycomb-like trabecular bone. Although cortical bone provides the majority of mechanical strength for a bone, there are few studies focusing on cortical bone repair or regeneration. Osteons (the Haversian system) form structural and functional units of cortical bone. In recent years, emerging evidences have shown that the osteon structure (including osteocytes, lamellae, lacunocanalicular network, and Haversian canals) plays critical roles in bone mechanics and turnover. Therefore, reconstruction of the osteon structure is crucial for cortical bone regeneration. This article provides a systematic summary of recent advances in osteons, including the structure, function, turnover, and regenerative strategies. First, the hierarchical structure of osteons is illustrated and the critical functions of osteons in bone dynamics are introduced. Next, the modeling and remodeling processes of osteons at a cellular level and the turnover of osteons in response to mechanical loading and aging are emphasized. Furthermore, several bioengineering approaches that were recently developed to recapitulate the osteon structure are highlighted. Impact statement This review provides a comprehensive summary of recent advances in osteons, especially the roles in bone formation, remodeling, and regeneration. Besides introducing the hierarchical structure and critical functions of osteons, we elucidate the modeling and remodeling of osteons at a cellular level. Specifically, we highlight the bioengineering approaches that were recently developed to mimic the hierarchical structure of osteons. We expect that this review will provide informative insights and attract increasing attentions in orthopedic community, shedding light on cortical bone regeneration in the future.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
11
|
Yilmaz HD, Cengiz U, Arslan YE, Kiran F, Ceylan A. From a plant secretion to the promising bone grafts: Cryogels of silicon-integrated quince seed mucilage by microwave-assisted sol-gel reaction. J Biosci Bioeng 2021; 131:420-433. [PMID: 33454223 DOI: 10.1016/j.jbiosc.2020.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023]
Abstract
Design and fabrication of biologically active cryogels using novel biopolymer(s) are still of great importance at regenerating bone defects such as traumatic bone injuries, maxillofacial surgery, osteomyelitis, and osteoporosis. Nowadays, plant mucilage, an herbal biomaterial, has been drawn attention by scientists due to their marvelous potential to fabricate 3-dimensional (3D) physical constructs for the field of regenerative medicine. Herein, a 3D cryogel from silicon-integrated quince seed mucilage (QSM) is constructed using microwave-assisted sol-gel reaction, characterized in-depth by attenuated total reflectance Fourier transform-infrared spectroscopy (ATR-FTIR), solid-state silicon cross-polarization magic-angle nuclear magnetic resonance (29Si-CP-MAS NMR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), micro-mechanical testing, porosity, and swelling tests, contact angle measurements, Brunauer-Emmet-Teller and Barret-Joyner-Halenda (BET-BJH) analysis, enzymatic biodegradation test, and field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDX) mapping. The osteobiologic capacity of the cryogels is determined using human adipose-derived mesenchymal stem cells (hAMSCs) under in vitro conditions. Osteogenic differentiation of hAMSCs on both QSM and silica-modified QSM (Si-QSM) cryogels is analyzed by histochemistry, immunohistochemistry, and quantitative-real time (q-RT) PCR techniques. The results obtained from in vitro experiments demonstrate that the upregulation of osteogenesis-related genes in Si-QSM cryogels presents a stronger and earlier development over QSM cryogels throughout the culture period, which in turn reveals the great potential of this novel Si-incorporated QSM cryogels for bone tissue engineering applications.
Collapse
Affiliation(s)
- Hilal Deniz Yilmaz
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Ugur Cengiz
- Surface Science Research Laboratory, Department of Chemical Engineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Turkey
| | - Ahmet Ceylan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| |
Collapse
|
12
|
Abbasi N, Lee RSB, Ivanovski S, Love RM, Hamlet S. In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomater Res 2020; 24:17. [PMID: 33014414 PMCID: PMC7529514 DOI: 10.1186/s40824-020-00196-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Biomaterial-based bone tissue engineering represents a promising solution to overcome reduced residual bone volume. It has been previously demonstrated that gradient and offset architectures of three-dimensional melt electrowritten poly-caprolactone (PCL) scaffolds could successfully direct osteoblast cells differentiation toward an osteogenic lineage, resulting in mineralization. The aim of this study was therefore to evaluate the in vivo osteoconductive capacity of PCL scaffolds with these different architectures. METHODS Five different calcium phosphate (CaP) coated melt electrowritten PCL pore sized scaffolds: 250 μm and 500 μm, 500 μm with 50% fibre offset (offset.50.50), tri layer gradient 250-500-750 μm (grad.250top) and 750-500-250 μm (grad.750top) were implanted into rodent critical-sized calvarial defects. Empty defects were used as a control. After 4 and 8 weeks of healing, the new bone was assessed by micro-computed tomography and immunohistochemistry. RESULTS Significantly more newly formed bone was shown in the grad.250top scaffold 8 weeks post-implantation. Histological investigation also showed that soft tissue was replaced with newly formed bone and fully covered the grad.250top scaffold. While, the bone healing did not happen completely in the 250 μm, offset.50.50 scaffolds and blank calvaria defects following 8 weeks of implantation. Immunohistochemical analysis showed the expression of osteogenic markers was present in all scaffold groups at both time points. The mineralization marker Osteocalcin was detected with the highest intensity in the grad.250top and 500 μm scaffolds. Moreover, the expression of the endothelial markers showed that robust angiogenesis was involved in the repair process. CONCLUSIONS These results suggest that the gradient pore size structure provides superior conditions for bone regeneration.
Collapse
Affiliation(s)
- Naghmeh Abbasi
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Ryan S. B. Lee
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Robert M. Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| |
Collapse
|
13
|
Ma Z, Li J, Cao F, Yang J, Liu R, Zhao D. Porous silicon carbide coated with tantalum as potential material for bone implants. Regen Biomater 2020; 7:453-459. [PMID: 33149934 PMCID: PMC7597802 DOI: 10.1093/rb/rbaa021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/02/2020] [Accepted: 04/12/2020] [Indexed: 01/22/2023] Open
Abstract
Porous silicon carbide (SiC) has a specific biomorphous microstructure similar to the trabecular microstructure of human bone. Compared with that of bioactive ceramics, such as calcium phosphate, SiC does not induce spontaneous interface bonding to living bone. In this study, bioactive tantalum (Ta) metal deposited on porous SiC scaffolds by chemical vapour deposition was investigated to accelerate osseointegration and improve the bonding to bones. Scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. Energy-dispersive spectroscopy and X-ray diffraction analysis showed that the coating consisted of Ta phases. The bonding strength between the Ta coating and the SiC substrate is 88.4 MPa. The yield strength of porous SiC with a Ta coating (pTa) was 45.8 ± 2.9 MPa, the compressive strength was 61.4 ± 3.2 MPa and the elastic modulus was ∼4.8 GPa. When MG-63 human osteoblasts were co-cultured with pTa, osteoblasts showed good adhesion and spreading on the surface of the pTa and its porous structure, which showed that it has excellent bioactivity and cyto-compatibility. To further study the osseointegration properties of pTa. PTa and porous titanium (pTi) were implanted into the femoral neck of goats for 12 weeks, respectively. The Van-Gieson staining of histological sections results that the pTa group had better osseointegration than the pTi group. These results indicate that coating bioactive Ta metal on porous SiC scaffolds could be a potential material for bone substitutes.
Collapse
Affiliation(s)
- Zhijie Ma
- Faculty of Electronic Information and Electrical Engineering, School of Biomedical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.,Orthopaedic Department Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China
| | - Jingyu Li
- Orthopaedic Department Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China
| | - Fang Cao
- Faculty of Electronic Information and Electrical Engineering, School of Biomedical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Jiahui Yang
- Orthopaedic Department Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China
| | - Rong Liu
- Faculty of Electronic Information and Electrical Engineering, School of Biomedical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Dewei Zhao
- Orthopaedic Department Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China
| |
Collapse
|
14
|
Kim JW, Park JH, Muthukumar T, Shin EY, Shin ME, Song JE, Khang G. Accelerating bone defects healing in calvarial defect model using 3D cultured bone marrow-derived mesenchymal stem cells on demineralized bone particle scaffold. J Tissue Eng Regen Med 2020; 14:563-574. [PMID: 32061025 DOI: 10.1002/term.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/10/2022]
Abstract
Bone defects are usually difficult to be regenerated due to pathological states or the size of the injury. Researchers are focusing on tissue engineering approaches in order to drive the regenerative events, using stem cells to regenerate bone. The purpose of this study is to evaluate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on biologically derived Gallus gallus domesticus-derived demineralized bone particle (GDD) sponge. The sponges were prepared by freeze-drying method using 1, 2, and 3 wt% GDD and cross-linked with glutaraldehyde. The GDD sponge was characterized using scanning electron microscopy, compressive strength, porosity, and Fourier transform infrared. The potential bioactivity of the sponge was evaluated by osteogenic differentiation of BMSCs using 3(4, dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and quantifying alkaline phosphatase (ALP) activity. in vivo experiments were evaluated through a micro-computerized tomography (μ-CT) and histological assays. The analysis confirmed that an increase in the concentration of the GDD in the sponge leads to a higher bone formation and deposition in rat calvarial defects. Histological assay results were in line with μ-CT. The results reported in this study demonstrated the potential application of GDD sponges as osteoinductor in bone tissue engineering in pathological or nonunion bone defects.
Collapse
Affiliation(s)
- Jin Woo Kim
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jong Ho Park
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Thangavelu Muthukumar
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Eun Yeong Shin
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Myeong Eun Shin
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|