1
|
Zaczek-Moczydłowska MA, Joszko K, Kavoosi M, Markowska A, Likus W, Ghavami S, Łos MJ. Biomimetic Natural Biomaterial Nanocomposite Scaffolds: A Rising Prospect for Bone Replacement. Int J Mol Sci 2024; 25:13467. [PMID: 39769231 PMCID: PMC11678580 DOI: 10.3390/ijms252413467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Biomimetic natural biomaterial (BNBM) nanocomposite scaffolds for bone replacement can reduce the rate of implant failure and the associated risks of post-surgical complications for patients. Traditional bone implants, like allografts, and autografts, have limitations, such as donor site morbidity and potential patient inflammation. Over two million bone transplant procedures are performed yearly, and success varies depending on the material used. This emphasizes the importance of developing new biomaterials for bone replacement. Innovative BNBM nanocomposites for modern bone fabrication can promote the colonization of the desired cellular components and provide the necessary mechanical properties. Recent studies have highlighted the advantages of BNBM nanocomposites for bone replacement; therefore, this review focuses on the application of cellulose, chitosan, alginates, collagen, hyaluronic acid, and synthetic polymers enhanced with nanoparticles for the fabrication of nanocomposite scaffolds used in bone regeneration and replacement. This work outlines the most up-to-date overview and perspectives of selected promising BNBM nanocomposites for bone replacement that could be used for scaffold fabrication and replace other biomorphic materials such as metallics, ceramics, and synthetic polymers in the future. In summary, the concluding remarks highlight the advantages and disadvantages of BNBM nanocomposites, prospects, and future directions for bone tissue regeneration and replacement.
Collapse
Affiliation(s)
| | - Kamil Joszko
- Department of Biomechatronics, Faculty of Biomedical Engineering, The Silesian University of Technology, 41-800 Zabrze, Poland
| | - Mahboubeh Kavoosi
- Biotechnology Center, The Silesian University of Technology, 44-100 Gliwice, Poland
| | | | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Faculty of Medicine, Academy of Silesia, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Marek J. Łos
- Biotechnology Center, The Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
3
|
Mofazali P, Atapour M, Nakamura M, Galati M, Saboori A. Evaluation of layer-by-layer assembly systems for drug delivery and antimicrobial properties in orthopaedic application. Int J Pharm 2024; 657:124148. [PMID: 38657718 DOI: 10.1016/j.ijpharm.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Layer-by-layer self-assembly systems were developed using monolayer and multilayer carriers to prevent infections and improve bone regeneration of porous Ti-6Al-4V scaffolds. These polymeric carriers incorporated (Gel/Alg-IGF-1 + Chi-Cef) and (4Gel/Alg-IGF-1 + Chi-Cef) on the surface of porous implants produced via electron beam melting (EBM). The results showed that the drug release from multilayer carriers was higher than that of monolayers after 14 days. However, the carrier containing Gel/Alg-IGF-1 + Chi-Cef exhibited more sustained behavior. Cell morphology was characterized, revealing that multilayer carriers had higher cell adhesion than monolayers. Additionally, cell differentiation was significantly greater for (Gel/Alg-IGF-1) + Chi-Cef, and (4Gel/Alg-IGF-1) + Chi-Cef multilayer carriers than for the monolayer groups after 7 days. Notably, the drug dosage was effective and did not interfere, and the cell viability assay showed safe results. Antibacterial evaluations demonstrated that both multilayer carriers had a greater effect on Staphylococcus aureus during treatment. The carriers containing lower alginate had notably less effect than the other studied carriers. This study aimed to test systems for controlling drug release, which will be applied to improve MG63 cell behavior and prevent bacterial accumulation during orthopaedic applications.
Collapse
Affiliation(s)
- Parinaz Mofazali
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku Tykistökatu 6, 20520 Turku, Finland
| | - Manuela Galati
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
4
|
Shi Z, Yang F, Hu Y, Pang Q, Shi L, Du T, Cao Y, Song B, Yu X, Cao Z, Ye Z, Liu C, Yu R, Chen X, Zhu Y, Pang Q. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym 2024; 327:121666. [PMID: 38171658 DOI: 10.1016/j.carbpol.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China; Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xueqiang Yu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Zhaoxun Cao
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315100, China
| | - Rongyao Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - Path to osteoinductivity. Bioact Mater 2022; 17:109-124. [PMID: 35386461 PMCID: PMC8964990 DOI: 10.1016/j.bioactmat.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
With the increase of global population, people's life expectancy is growing as well. Humans tend to live more active lifestyles and, therefore, trauma generated large defects become more common. Instances of tumour resection or pathological conditions and complex orthopaedic issues occur more frequently increasing necessity for bone substitutes. Composition of calcium phosphate cements (CPCs) is comparable to the chemical structure of bone minerals. Their ability to self-set and resorb in vivo secures a variety of potential applications in bone regeneration. Despite the years-long research and several products already reaching the market, finding the right properties for calcium phosphate cement to be osteoinductive and both injectable and suitable for clinical use is still a sudoku. This article is focused on injectable, porous CPCs, reviewing the latest developments on the path toward finding osteoinductive material, which is suitable for injection.
Collapse
Affiliation(s)
- Agneta Vezenkova
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
6
|
Zanca C, Carbone S, Patella B, Lopresti F, Aiello G, Brucato V, Carfì Pavia F, La Carrubba V, Inguanta R. Composite Coatings of Chitosan and Silver Nanoparticles Obtained by Galvanic Deposition for Orthopedic Implants. Polymers (Basel) 2022; 14:3915. [PMID: 36146057 PMCID: PMC9504697 DOI: 10.3390/polym14183915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
In this work, composite coatings of chitosan and silver nanoparticles were presented as an antibacterial coating for orthopedic implants. Coatings were deposited on AISI 304L using the galvanic deposition method. In galvanic deposition, the difference of the electrochemical redox potential between two metals (the substrate and a sacrificial anode) has the pivotal role in the process. In the coupling of these two metals a spontaneous redox reaction occurs and thus no external power supply is necessary. Using this process, a uniform deposition on the exposed area and a good adherence of the composite coating on the metallic substrate were achieved. Physical-chemical characterizations were carried out to evaluate morphology, chemical composition, and the presence of silver nanoparticles. These characterizations have shown the deposition of coatings with homogenous and porous surface structures with silver nanoparticles incorporated and distributed into the polymeric matrix. Corrosion tests were also carried out in a simulated body fluid at 37 °C in order to simulate the same physiological conditions. Corrosion potential and corrosion current density were obtained from the polarization curves by Tafel extrapolation. The results show an improvement in protection against corrosion phenomena compared to bare AISI 304L. Furthermore, the ability of the coating to release the Ag+ was evaluated in the simulated body fluid at 37 °C and it was found that the release mechanism switches from anomalous to diffusion controlled after 3 h.
Collapse
Affiliation(s)
- C. Zanca
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| | - S. Carbone
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| | - B. Patella
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| | - F. Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| | - G. Aiello
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| | - V. Brucato
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| | - F. Carfì Pavia
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
- Consorzio Universitario di Caltanissetta, Corso Vittorio Emanuele 92, 93100 Caltanissetta, Italy
| | - V. La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
- ATeN Center, University of Palermo, Viale delle Scienze, 90133 Palermo, Italy
| | - R. Inguanta
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90133 Palermo, Italy
| |
Collapse
|
7
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
8
|
da Costa Marques R, Simon J, d’Arros C, Landfester K, Jurk K, Mailänder V. Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. Regen Biomater 2022; 9:rbac044. [PMID: 35936551 PMCID: PMC9348553 DOI: 10.1093/rb/rbac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Protein adsorption on biomaterials for bone substitution, such as calcium phosphates (CaP), evokes biological responses and shapes the interactions of biomaterials with the surrounding biological environment. Proteins adsorb when CaP materials are combined with growth factor-rich hemoderivatives prior to implantation to achieve enhanced angiogenesis and stimulate new bone formation. However, the identification of the adsorbed proteins and their angiogenic effect on bone homeostasis remain incompletely investigated. In this study, we analyzed the adsorbed complex protein composition on CaP surfaces when using the hemoderivatives plasma, platelet lysate in plasma (PL), and washed platelet lysate proteins (wPL). We detected highly abundant, non-regenerative proteins and anti-angiogenic proteins adsorbed on CaP surfaces after incubation with PL and wPL by liquid chromatography and mass spectrometry (LC–MS) proteomics. Additionally, we measured a decreased amount of adsorbed pro-angiogenic growth factors. Tube formation assays with human umbilical endothelial cells demonstrated that the CaP surfaces only stimulate an angiogenic response when kept in the hemoderivative medium but not after washing with PBS. Our results highlight the necessity to correlate biomaterial surfaces with complex adsorbed protein compositions to tailor the biomaterial surface toward an enrichment of pro-angiogenic factors.
Collapse
Affiliation(s)
- Richard da Costa Marques
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Johanna Simon
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Cyril d’Arros
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, ONIRIS, Université de Nantes , Nantes, 44042, France
- Biomatlante—Advanced Medical Solutions Group Plc , Vigneux-de-Bretagne, 44360, France
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz , Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Volker Mailänder
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
9
|
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022; 10:899760. [PMID: 35600891 PMCID: PMC9114740 DOI: 10.3389/fbioe.2022.899760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Yuhang Tian
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Danhua Wu
- The People’s Hospital of Chaoyang District, Changchun, China
| | - Dankai Wu
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yutao Cui
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangkai Ren
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chuangang Peng,
| |
Collapse
|
10
|
Mineralization in a Critical Size Bone-Gap in Sheep Tibia Improved by a Chitosan-Calcium Phosphate-Based Composite as Compared to Predicate Device. MATERIALS 2022; 15:ma15030838. [PMID: 35160784 PMCID: PMC8836995 DOI: 10.3390/ma15030838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
Deacetylated chitin derivatives have been widely studied for tissue engineering purposes. This study aimed to compare the efficacy of an injectable product containing a 50% deacetylated chitin derivative (BoneReg-Inject™) and an existing product (chronOS Inject®) serving as a predicate device. A sheep model with a critical size drill hole in the tibial plateau was used. Holes of 8 mm diameter and 30 mm length were drilled bilaterally into the proximal area of the tibia and BoneReg-Inject™ or chronOS Inject® were injected into the right leg holes. Comparison of resorption and bone formation in vivo was made by X-ray micro-CT and histological evaluation after a live phase of 12 weeks. Long-term effects of BoneReg-Inject™ were studied using a 13-month live period. Significant differences were observed in (1) amount of new bone within implant (p < 0.001), higher in BoneReg-InjectTM, (2) signs of cartilage tissue (p = 0.003), more pronounced in BoneReg-InjectTM, and (3) signs of fibrous tissue (p < 0.001), less pronounced in BoneReg-InjectTM. Mineral content at 13 months postoperative was significantly higher than at 12 weeks (p < 0.001 and p < 0.05, for implant core and rim, respectively). The data demonstrate the potential of deacetylated chitin derivatives to stimulate bone formation.
Collapse
|
11
|
Advancements in Fabrication and Application of Chitosan Composites in Implants and Dentistry: A Review. Biomolecules 2022; 12:biom12020155. [PMID: 35204654 PMCID: PMC8961661 DOI: 10.3390/biom12020155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a biopolymer that is found in nature and is produced from chitin deacetylation. Chitosan has been studied thoroughly for multiple applications with an interdisciplinary approach. Antifungal antibacterial activities, mucoadhesion, non-toxicity, biodegradability, and biocompatibility are some of the unique characteristics of chitosan-based biomaterials. Moreover, chitosan is the only widely-used natural polysaccharide, and it is possible to chemically modify it for different applications and functions. In various fields, chitosan composite and compound manufacturing has acquired much interest in developing several promising products. Chitosan and its derivatives have gained attention universally in biomedical and pharmaceutical industries as a result of their desired characteristics. In the present mini-review, novel methods for preparing chitosan-containing materials for dental and implant engineering applications along with challenges and future perspectives are discussed.
Collapse
|
12
|
Riccucci G, Ferraris S, Reggio C, Bosso A, Örlygsson G, Ng CH, Spriano S. Polyphenols from Grape Pomace: Functionalization of Chitosan-Coated Hydroxyapatite for Modulated Swelling and Release of Polyphenols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14793-14804. [PMID: 34905366 PMCID: PMC8717632 DOI: 10.1021/acs.langmuir.1c01930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Indexed: 06/12/2023]
Abstract
Chitosan is known for its specific antibacterial mechanism and biodegradability, while polyphenols are known for their antioxidant and anti-inflammatory properties: coupling these properties on a surface for bone contact, such as hydroxyapatite, is of great interest. The system developed here allows the combination of hydroxyapatite, chitosan, and polyphenol properties in the same multifunctional biomaterial in order to modulate the host response after implantation. Crosslinked chitosan is used in this research to create a stable coating on hydroxyapatite, and then it is functionalized for a smart release of the polyphenols. The release is higher in inflammatory conditions and lower in physiological conditions. The properties of the coated and functionalized samples are characterized on the as-prepared samples and after the samples are immersed (for 24 h) in solutions, which simulate the inflammatory and physiological conditions. Characterization is performed in order to confirm the presence of polyphenols grafted within the chitosan coating, the stability of grafting as a function of pH, the morphology of the coating and distribution of polyphenols on the surface, and the redox reactivity and radical scavenging activity of the functionalized coating. All the results are in line with previous results, which show a successful coating with chitosan and functionalization with polyphenols. Moreover, the polyphenols have a different release kinetics that is faster in a simulated inflammatory environment compared to that in the physiological environment. Even after the release tests, a fraction of polyphenols are still bound on the surface, maintaining the antioxidant and radical scavenging activity for a longer time. An electrostatic bond occurs between the negative-charged polar groups of polyphenols (carboxyls and/or phenols) and the positive amide groups of the chitosan coating, and the substitution of the crosslinker by the polyphenols occurs during the functionalization process.
Collapse
Affiliation(s)
- Giacomo Riccucci
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Sara Ferraris
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Camilla Reggio
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonella Bosso
- Consiglio
per la ricerca in agricoltura e l’analisi dell’economia
agraria—Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
| | | | - Chuen H. Ng
- Genis
hf., Adalgata 34, 580 Siglufjördur, Iceland
| | - Silvia Spriano
- Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
13
|
Wang D, Zhang P, Mei X, Chen Z. Repair calvarial defect of osteoporotic rats by berberine functionalized porous calcium phosphate scaffold. Regen Biomater 2021; 8:rbab022. [PMID: 34211732 PMCID: PMC8240619 DOI: 10.1093/rb/rbab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
In this article, we propose a simple scheme of using berberine (BBR) to modify porous calcium phosphate ceramics (named PCPC). These BBR molecules regulate the crystallization of hydroxyapatite nanorods on PCPC. We found that these nanorods and the adsorbed BBR changed the interface micro-environment of PCPC by SEM images. The microenvironment of PCPC surface is essential for promoting BMSCs’ proliferation and differentiation. These results demonstrated that PCPC/BBR markedly improved the bone regeneration of osteoporosis rats. Moreover, PCPC/BBR had significantly increased the expression levels of ALP, osteocalcin and bone morphogenetic protein2 and RUNX2 in BMSCs originated from osteoporosis rats.
Collapse
Affiliation(s)
- Dahao Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Peng Zhang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou 121001, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
14
|
Bio-Functionalized Chitosan for Bone Tissue Engineering. Int J Mol Sci 2021; 22:ijms22115916. [PMID: 34072888 PMCID: PMC8198664 DOI: 10.3390/ijms22115916] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Hybrid biomaterials allow for the improvement of the biological properties of materials and have been successfully used for implantology in medical applications. The covalent and selective functionalization of materials with bioactive peptides provides favorable results in tissue engineering by supporting cell attachment to the biomaterial through biochemical cues and interaction with membrane receptors. Since the functionalization with bioactive peptides may alter the chemical and physical properties of the biomaterials, in this study we characterized the biological responses of differently functionalized chitosan analogs. Chitosan analogs were produced through the reaction of GRGDSPK (RGD) or FRHRNRKGY (HVP) sequences, both carrying an aldehyde-terminal group, to chitosan. The bio-functionalized polysaccharides, pure or "diluted" with chitosan, were chemically characterized in depth and evaluated for their antimicrobial activities and biocompatibility toward human primary osteoblast cells. The results obtained indicate that the bio-functionalization of chitosan increases human-osteoblast adhesion (p < 0.005) and proliferation (p < 0.005) as compared with chitosan. Overall, the 1:1 mixture of HVP functionalized-chitosan:chitosan is the best compromise between preserving the antibacterial properties of the material and supporting osteoblast differentiation and calcium deposition (p < 0.005 vs. RGD). In conclusion, our results reported that a selected concentration of HVP supported the biomimetic potential of functionalized chitosan better than RGD and preserved the antibacterial properties of chitosan.
Collapse
|
15
|
Ahmad SI, Ahmad R, Khan MS, Kant R, Shahid S, Gautam L, Hasan GM, Hassan MI. Chitin and its derivatives: Structural properties and biomedical applications. Int J Biol Macromol 2020; 164:526-539. [PMID: 32682975 DOI: 10.1016/j.ijbiomac.2020.07.098] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Chitin, a polysaccharide that occurs abundantly in nature after cellulose, has attracted the interest of the scientific community due to its plenty of availability and low cost. Mostly, it is derived from the exoskeleton of insects and marine crustaceans. Often, it is insoluble in common solvents that limit its applications but its deacetylated product, named chitosan is found to be soluble in protonated aqueous medium and used widely in various biomedical fields. Indeed, the existence of the primary amino group on the backbone of chitosan provides it an important feature to modify it chemically into other derivatives easily. In the present review, we present the structural properties of chitin, and its derivatives and highlighted their biomedical implications including, tissue engineering, drug delivery, diagnosis, molecular imaging, antimicrobial activity, and wound healing. We further discussed the limitations and prospects of this versatile natural polysaccharide.
Collapse
Affiliation(s)
- Syed Ishraque Ahmad
- Department of Chemistry, Zakir Husain Delhi College (University of Delhi), New Delhi 110002, India.
| | - Razi Ahmad
- Regional Center for Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Ravi Kant
- Department of Chemistry, Zakir Husain Delhi College (University of Delhi), New Delhi 110002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Leela Gautam
- Department of Chemistry, Zakir Husain Delhi College (University of Delhi), New Delhi 110002, India
| | - Ghulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
16
|
Bachimam K, Emül E, Sağlam N, Korkusuz F. Baicalein Nanofiber Scaffold Containing Hyaluronic Acid and Polyvinyl Alcohol: Preparation and Evaluation. Turk J Med Sci 2020; 50:1139-1146. [PMID: 32283911 PMCID: PMC7379436 DOI: 10.3906/sag-2001-123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background/aim Bone tumor is one of the major causes of tissue bone loss, particularly after performing surgical excision operation to bone lesion that needs to be replaced by biomaterials and ensure a complete filling of tissue-loss spaces. The purpose of our study was to produce a nanofiber-based bone graft scaffold to fill the gaps resulted from bone cancer treatment and also capable of carrying functional molecules that can play a major role in preventing further cancer growth at the targeted bone tissue. Materials and methods Electrospinning method was used in order to produce nanofibers from different kinds of polymers; Hyaluronic acid (HA), Polyethylene oxide (PEO) and Polyvinyl alcohol (PVA) blended with different concentrations of herbal antibiotic and anti cancer flavonoid molecules called Baicalein (BE). The morphological and chemical structures of scaffold samples were studied using Scanning Electron Microscope (SEM), Fourier Transform Infrared-spectroscopy (FT-IR) and Surface-enhanced Raman spectroscopy (SERS) Analysis. Results The results showed production of homogenous nanofibers-based scaffold (diameter between 80 nm and 470 nm) that contains the polymers used in the spinning process and the entrapped Baicalein molecules within the nanofiber structure. Conclusion It was concluded that successful formation of bone tissue mimicking scaffold can be achieved by using Electrospinning method that produces nonwoven nanofibers and at the same time can hold functional anticancer agent such as Baicalein, which may allow using these types of scaffold in bone cancer treatment procedures.
Collapse
Affiliation(s)
- Kamel Bachimam
- Nanotechnology and Nanomedicine Department, Institute of Graduate School of Science and Engineering,Hacettepe University, Ankara, Turkey
| | - Ezgi Emül
- Nanotechnology and Nanomedicine Department, Institute of Graduate School of Science and Engineering,Hacettepe University, Ankara, Turkey
| | - Necdet Sağlam
- Nanotechnology and Nanomedicine Department, Institute of Graduate School of Science and Engineering,Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Sangkert S, Kamolmatyakul S, Meesane J. The bone-mimicking effect of calcium phosphate on composite chitosan scaffolds in maxillofacial bone tissue engineering. J Appl Biomater Funct Mater 2020; 18:2280800019893204. [PMID: 32297820 DOI: 10.1177/2280800019893204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This research explored a new trend in biomaterials science. The bone-mimicking effect of calcium phosphate on chitosan composite scaffolds was evaluated. Chitosan with 2% calcium phosphate was found to have suitable bone-mimicking performance for maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Supaporn Sangkert
- Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Thailand
| | | | - Jirut Meesane
- Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
18
|
Li S, Tian X, Fan J, Tong H, Ao Q, Wang X. Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. MICROMACHINES 2019; 10:E765. [PMID: 31717955 PMCID: PMC6915415 DOI: 10.3390/mi10110765] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Chitosan is a unique natural resourced polysaccharide derived from chitin with special biocompatibility, biodegradability, and antimicrobial activity. During the past three decades, chitosan has gradually become an excellent candidate for various biomedical applications with prominent characteristics. Chitosan molecules can be chemically modified, adapting to all kinds of cells in the body, and endowed with specific biochemical and physiological functions. In this review, the intrinsic/extrinsic properties of chitosan molecules in skin, bone, cartilage, liver tissue repair, and organ three-dimensional (3D) bioprinting have been outlined. Several successful models for large scale-up vascularized and innervated organ 3D bioprinting have been demonstrated. Challenges and perspectives in future complex organ 3D bioprinting areas have been analyzed.
Collapse
Affiliation(s)
- Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Tian
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Jun Fan
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Hao Tong
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Qiang Ao
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|