1
|
Zhao Z, Sun X, Tu P, Ma Y, Guo Y, Zhang Y, Liu M, Wang L, Chen X, Si L, Li G, Pan Y. Mechanisms of vascular invasion after cartilage injury and potential engineering cartilage treatment strategies. FASEB J 2024; 38:e23559. [PMID: 38502020 DOI: 10.1096/fj.202302391rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.
Collapse
Affiliation(s)
- Zitong Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoxian Sun
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Pengcheng Tu
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yang Guo
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lining Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xinyu Chen
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lin Si
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Guangguang Li
- Orthopedics and traumatology department, Yixing Traditional Chinese Medicine Hospital, Yixing, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
2
|
Etori K, Tanaka S, Tamura J, Hattori K, Kagami SI, Nakamura J, Ohtori S, Nakajima H. Fibroblast growth factor receptor 1 as a potential marker of terminal effector peripheral T helper cells in rheumatoid arthritis patients. Rheumatology (Oxford) 2023; 62:3763-3769. [PMID: 37184877 DOI: 10.1093/rheumatology/kead220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES RA is an autoimmune disease characterized by destructive polyarthritis. CD4+ T cells are pivotal to its pathogenesis, and our previous study revealed the expression of fibroblast growth factor receptor 1 (FGFR1) is modulated by MTX treatment in CD4+ T cells of RA patients; however, the roles of FGFR1 in CD4+ T cells in the pathogenesis of RA is unclear. Therefore, in this study, we aimed to characterize FGFR1-positive CD4+ T cells in RA patients. METHODS The abundance of FGFR1-positive CD4+ T cells in peripheral blood and synovium was determined. Single-cell RNA sequencing (scRNA-seq) was performed on synovial CD4+ T cells to characterize FGFR1-positive cells. In addition, T cell activation status and cytokine production were determined using flow cytometry. RESULTS The percentage of FGFR1-positive CD4+ T cells in the peripheral blood was higher in RA patients than in healthy controls (P =0.0035). They were also present in the synovium of active RA patients. The results of scRNA-seq revealed that peripheral Th (Tph) cells preferentially expressed FGFR1. Additionally, these FGFR1-positive Tph cells displayed a terminal effector cell phenotype. Consistent with this finding, FGFR1-positive CD4+ T cells in peripheral blood expressed IL-21 and IFN-γ. CONCLUSION Our study provides evidence that FGFR1 marks terminal effector Tph cells in patients with RA.
Collapse
Affiliation(s)
- Keishi Etori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Tamura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koto Hattori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin-Ichiro Kagami
- Research Center for Allergy and Clinical Immunology, Asahi General Hospital, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Cheng CF, Liao HJ, Wu CS. Tissue microenvironment dictates inflammation and disease activity in rheumatoid arthritis. J Formos Med Assoc 2022; 121:1027-1033. [PMID: 35144834 DOI: 10.1016/j.jfma.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
The recent advance in treatments for rheumatoid arthritis (RA) has significantly improved the prognosis of RA patients. However, these novel therapies do not work well for all RA patients. The unmet need suggests that the current understanding about how inflammatory response arises and progresses in RA is limited. Recent accumulating evidence reveals an important role for the tissue microenvironment in the pathogenesis of RA. The synovium, the main tissue where the RA activity occurs, is composed by a unique extracellular matrix (ECM) and residing cells. The ECM molecules provide environmental signals that determine programmed site-specific cell behavior. Improved understanding of the tissue microenvironment, especially how the synovial architecture, ECM molecules, and site-specific cell behavior promote chronic inflammation and tissue destruction, will enhance deciphering the pathogenesis of RA. Moreover, in-depth analysis of tissue microenvironment will allow us to identify potential therapeutic targets. Research is now undertaken to explore potential candidates, both cellular and ECM molecules, to develop novel therapies. This article reviews recent advances in knowledge about how changes in cellular and ECM factors within the tissue microenvironment result in propagation of chronic inflammation in RA.
Collapse
Affiliation(s)
- Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
4
|
Dong P, Tang X, Wang J, Zhu B, Li Z. miR-653-5p suppresses the viability and migration of fibroblast-like synoviocytes by targeting FGF2 and inactivation of the Wnt/beta-catenin pathway. J Orthop Surg Res 2022; 17:5. [PMID: 34983591 PMCID: PMC8725305 DOI: 10.1186/s13018-021-02887-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Several studies reported that fibroblast-like synoviocytes (FLSs) and miRNAs are associated with RA pathogenesis. This study explored the function of miR-653-5p in the regulation of human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) cells. Methods The mRNA and protein levels of genes were measured by RT-qPCR and western blot, respectively. MTT, wound healing, and invasion assays were used to evaluate the viability and metastasis of FLSs. Luciferase reporter and RNA pull-down assays were employed to determine the interaction between miR-653-5p and FGF2. Results RT-qPCR results demonstrated that miR-653-5p expression was decreased and FGF2 level was increased in synovial tissues and FLSs of RA. Moreover, the viability and metastasis of FLSs were accelerated by miR-653-5p addition, which was restrained by miR-653-5p suppression. Furthermore, we demonstrated that levels of Rac1, Cdc42, and RhoA were decreased after miR-653-5p addition. Besides, luciferase reporter and RNA pull-down assays implied that miR-653-5p targeted the 3′-UTR of FGF2. Functional assays showed that FGF2 overexpression neutralized the suppressive effects of miR-653-5p addition on HFLS-RA cell viability, metastasis, and the levels of Rho family proteins. Meanwhile, the levels of β-catenin, cyclin D1, and c-myc were declined by miR-653-5p supplementation, but enhanced by FGF2 addition. Conclusion In sum, we manifested that miR-653-5p restrained HFLS-RA cell viability and metastasis via targeting FGF2 and repressing the Wnt/beta-Catenin pathway.
Collapse
Affiliation(s)
- Peilong Dong
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Xiaobo Tang
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Jian Wang
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Botao Zhu
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Zhiyun Li
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Pentosan polysulfate sodium prevents functional decline in chikungunya infected mice by modulating growth factor signalling and lymphocyte activation. PLoS One 2021; 16:e0255125. [PMID: 34492036 PMCID: PMC8423248 DOI: 10.1371/journal.pone.0255125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that causes large outbreaks world-wide leaving millions of people with severe and debilitating arthritis. Interestingly, clinical presentation of CHIKV arthritides have many overlapping features with rheumatoid arthritis including cellular and cytokine pathways that lead to disease development and progression. Currently, there are no specific treatments or vaccines available to treat CHIKV infections therefore advocating the need for the development of novel therapeutic strategies to treat CHIKV rheumatic disease. Herein, we provide an in-depth analysis of an efficacious new treatment for CHIKV arthritis with a semi-synthetic sulphated polysaccharide, Pentosan Polysulfate Sodium (PPS). Mice treated with PPS showed significant functional improvement as measured by grip strength and a reduction in hind limb foot swelling. Histological analysis of the affected joint showed local inflammation was reduced as seen by a decreased number of infiltrating immune cells. Additionally, joint cartilage was protected as demonstrated by increased proteoglycan staining. Using a multiplex-immunoassay system, we also showed that at peak disease, PPS treatment led to a systemic reduction of the chemokines CXCL1, CCL2 (MCP-1), CCL7 (MCP-3) and CCL12 (MCP-5) which may be associated with the reduction in cellular infiltrates. Further characterisation of the local effect of PPS in its action to reduce joint and muscle inflammation was performed using NanoString™ technology. Results showed that PPS altered the local expression of key functional genes characterised for their involvement in growth factor signalling and lymphocyte activation. Overall, this study shows that PPS is a promising treatment for alphaviral arthritis by reducing inflammation and protecting joint integrity.
Collapse
|
6
|
Asanuma YF, Aizaki Y, Noma H, Yokota K, Matsuda M, Kozu N, Takebayashi Y, Nakatani H, Hasunuma T, Kawai S, Mimura T. Plasma pentraxin 3 is associated with progression of radiographic joint damage, but not carotid atherosclerosis, in female rheumatoid arthritis patients: 3-year prospective study. Mod Rheumatol 2020; 30:959-966. [PMID: 31615315 DOI: 10.1080/14397595.2019.1681583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022]
Abstract
Background: Pentraxin 3 (PTX3) has an important role in inflammation, immunity, and atherosclerosis. Rheumatoid arthritis (RA) is a chronic inflammatory disease featuring both joint damage and atherosclerosis. We investigated whether the plasma PTX3 level was associated with progression of joint destruction and subclinical atherosclerosis in RA patients.Methods: Plasma PTX3 levels were measured in 72 women with RA and 80 female control subjects. In RA patients, we also evaluated clinical characteristics, medications, and at one and three years, joint damage and atherosclerosis. Then we investigated whether PTX3 was associated with progression of joint destruction or an increase of carotid intima-media thickness (IMT).Results: Plasma PTX3 levels were significantly higher in the RA patients than in healthy controls (4.05 ± 2.91 ng/mL vs. 1.61 ± 1.05 ng/mL, p < .001). By multivariate linear regression analysis, the plasma pentraxin 3 level was independently associated with radiographic progression of joint damage for 3 years in the RA patients after adjustment for age, disease duration, body mass index, rheumatoid factor, MMP-3, Disease Activity Score 28-ESR, postmenopausal status, current use of corticosteroids and biologic use. On the other hands, pentraxin 3 was not associated with an increase of carotid intima-media thickness in RA patients.Conclusion: Female RA patients had elevated plasma PTX3 levels compared with control female subjects. PTX3 was independently associated with radiographic progression of joint damage in the RA patients, but not with carotid atherosclerosis.
Collapse
Affiliation(s)
- Yu Funakubo Asanuma
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hisashi Noma
- Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Kazuhiro Yokota
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Mayumi Matsuda
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Noritsune Kozu
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Kozu Orthopaedic Clinic, Chiba, Japan
| | - Yoshitake Takebayashi
- Department of Health Risk Communication, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Nakatani
- Department of Research, Clinical Trial Center, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Tomoko Hasunuma
- Department of Research, Clinical Trial Center, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
7
|
Pentraxin 3 inhibits fibroblast growth factor 2 induced osteoclastogenesis in rheumatoid arthritis. Biomed Pharmacother 2020; 131:110628. [PMID: 32890968 DOI: 10.1016/j.biopha.2020.110628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Synovial fibroblasts (SFs) act as key effector cells mediating synovial inflammation and joint destruction in rheumatoid arthritis (RA). Fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) play important roles in RASF-mediated osteoclastogenesis. Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with nonredundant roles in inflammation and innate immunity. PTX3 is produced by various cell types, including SFs and is highly expressed in RA. However, the role of PTX3 in FGF2-induced osteoclastogenesis in RA and the underlying mechanism have been poorly elucidated. METHODS We first determined the expression of FGF2 and RANKL in synovial tissue and synovial fluid of RA patients. We then examined the effect of PTX3 on RASF osteoclastogenesis induced by endogenous and exogenous FGF2 in isolated RASF cells treated with FGF2 and/or recombinant PTX3 (rPTX3). Thirdly, we analyzed the effect of PTX3 on FGF2 binding to FGFR-1 and HSPG receptors on RASFs. Lastly, we evaluated joint morphology after injection of rPTX3 into collagen-induced arthritis (CIA) mice. RESULTS FGF2 was confirmed to be highly expressed in both synovial tissue and synovial fluid of RA patients. FGF2 promoted cell proliferation and increased the expressions of RANKL and ICAM-1 and RANKL/OPG to induce osteoclastogenesis in RASF, while anti-FGF2 neutralized this effect. PTX3 significantly inhibited FGF2-induced RASF cell growth and osteoclastogenesis by preventing the interaction of 125I-FGF2 and FGFRs on the same cells. In addition, administration of rPTX3 significantly ameliorated cartilage and bone destruction in mice with CIA. CONCLUSIONS PTX3 exhibited an inhibitory effect on the autocrine and paracrine stimulation of FGF2 on SFs, and ameliorated bone destruction in CIA mice. PTX3 may be implicated in bone destruction in RA, which may provide theoretical evidence and potential therapeutic targets for RA treatment.
Collapse
|
8
|
Farivar S, Ramezankhani R, Mohajerani E, Ghazimoradi MH, Shiari R. Gene Expression Analysis of Chondrogenic Markers in Hair Follicle Dermal Papillae Cells Under the Effect of Laser Photobiomodulation and the Synovial Fluid. J Lasers Med Sci 2019; 10:171-178. [PMID: 31749941 DOI: 10.15171/jlms.2019.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Regarding the limited ability of the damaged cartilage cells to self-renew, which is due to their specific tissue structure, subtle damages can usually cause diseases such as osteoarthritis. In this work, using laser photobiomodulation and an interesting source of growth factors cocktail called the synovial fluid, we analyzed the chondrogenic marker genes in treated hair follicle dermal papilla cells as an accessible source of cells with relatively high differentiation potential. Methods: Dermal papilla cells were isolated from rat whisker hair follicle (Rattus norvegicus) and established cell cultures were treated with a laser (gallium aluminum arsenide diode Laser (λ=780 nm, 30 mW) at 5 J/cm2 ), the synovial fluid, and a combination of both. After 1, 4, 7, and 14 days, the morphological changes were evaluated and the expression levels of four chondrocyte marker genes (Col2a1, Sox-9, Col10a1, and Runx-2) were assessed by the quantitative real-time polymerase chain reaction. Results: It was monitored that treating cells with laser irradiation can accelerate the rate of proliferation of cells. The morphology of the cells treated with the synovial fluid altered considerably as in the fourth day they surprisingly looked like cultured articular chondrocytes. The gene expression analysis showed that all genes were up-regulated until the day 14 following the treatments although not equally in all the cell groups. Moreover, the cell groups treated with both irradiation and the synovial fluid had a significantly augmented expression in gene markers. Conclusion: Based on the gene expression levels and the morphological changes, we concluded that the synovial fluid can have the potential to make the dermal papilla cells to most likely mimic the chondrogenic and/or osteogenic differentiation, although this process seems to be augmented by the irradiation of the low-level laser.
Collapse
Affiliation(s)
- Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Roya Ramezankhani
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Ezedin Mohajerani
- Laser and Plasma Research Institute, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Mohammad Hosein Ghazimoradi
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Reza Shiari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Miranda JP, Camões SP, Gaspar MM, Rodrigues JS, Carvalheiro M, Bárcia RN, Cruz P, Cruz H, Simões S, Santos JM. The Secretome Derived From 3D-Cultured Umbilical Cord Tissue MSCs Counteracts Manifestations Typifying Rheumatoid Arthritis. Front Immunol 2019; 10:18. [PMID: 30804924 PMCID: PMC6370626 DOI: 10.3389/fimmu.2019.00018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder whose treatment is mostly restricted to pain and symptom management and to the delay of joint destruction. Mesenchymal stem/stromal cells from the umbilical cord tissue (UC-MSCs) have previously been proven to be immunomodulatory and more efficient than bone marrow-derived MSCs in causing remission of local and systemic arthritic manifestations in vivo. Given the paracrine nature of UC-MSC activity, their application as active substances can be replaced by their secretome, thus avoiding allogeneic rejection and safety issues related to unwanted grafting. In this work, we aimed at demonstrating the viability of applying the 3D-primed UC-MSC secretome for the amelioration of arthritic signs. A proteomic analysis was performed to both, media conditioned by UC-MSC monolayer (CM2D) and 3D cultures (CM3D). The analysis of relevant trophic factors confirmed secretome profiles with very significant differences in terms of therapeutic potential. Whereas, CM3D was characterised by a prevailing expression of anti-inflammatory cytokines such as IL-10 and LIF, along with trophic factors involved in different mechanisms leading to tissue regeneration, such as PDGF-BB, FGF-2, I-309, SCF, and GM-CSF; CM2D presented relatively higher levels of IL-6, MCP-1, and IL-21, with recognised pro-inflammatory roles in joint disease and pleiotropic effects in the progression of rheumatoid arthritis (RA). Accordingly, different motogenic effects over mouse chondrocytes and distinct capacities of inducing glycosaminoglycan synthesis in vitro were observed between CM3D and CM2D. Finally, the evaluation of arthritic manifestations in vivo, using an adjuvant-induced model for arthritis (AIA), suggested a significantly higher therapeutic potential of CM3D over CM2D and even UC-MSCs. Histological analysis confirmed a faster remission of local and systemic arthritic manifestations of CM3D-treated animals. Overall, the results show that the use of UC-MSC CM3D is a viable and better strategy than direct UC-MSC administration for counteracting AIA-related signs. This strategy represents a novel MSC-based but nonetheless cell-free treatment for arthritic conditions such as those characterising RA.
Collapse
Affiliation(s)
- Joana P Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Sérgio P Camões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Maria M Gaspar
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Joana S Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Manuela Carvalheiro
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | | | | | | | - Sandra Simões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Jorge M Santos
- ECBio S.A., Amadora, Portugal.,Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente, Universidade do Porto, Porto, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Moise N, Friedman A. Rheumatoid arthritis - a mathematical model. J Theor Biol 2019; 461:17-33. [DOI: 10.1016/j.jtbi.2018.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022]
|
11
|
Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis 2018. [PMID: 29540697 PMCID: PMC5851988 DOI: 10.1038/s41419-018-0433-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the synovial joints. Although involvement of the fibroblast growth factor (FGF) signaling pathway has been suggested as an important modulator in RA development, no clear evidence has been provided. In this study, we found that synovial fluid basic FGF (bFGF) concentration was significantly higher in RA than in osteoarthritis (OA) patients. bFGF stimulates proliferation and migration of human fibroblast-like synoviocytes (FLSs) by activation of the bFGF-FGF receptor 3 (FGFR3)-ribosomal S6 kinase 2 (RSK2) signaling axis. Moreover, a molecular docking study revealed that kaempferol inhibited FGFR3 activity by binding to the active pocket of the FGFR3 kinase domain. Kaempferol forms hydrogen bonds with the FGFR3 backbone oxygen of Glu555 and Ala558 and the side chain of Lys508. Notably, the inhibition of bFGF-FGFR3-RSK2 signaling by kaempferol suppresses the proliferation and migration of RA FLSs and the release of activated T-cell-mediated inflammatory cytokines, such as IL-17, IL-21, and TNF-α. We further found that activated phospho-FGFR3 and -RSK2 were more highly observed in RA than in OA synovium. The hyperplastic lining and sublining lymphoid aggregate layers of RA synovium showed p-RSK2-expressing CD68+ macrophages with high frequency, while pRSK2-expressing CD4+ T-cells was observed at a lower frequency. Notably, kaempferol administration in collagen-induced arthritis mice relieved the frequency and severity of arthritis. Kaempferol reduced osteoclast differentiation in vitro and in vivo relative to the controls and was associated with the inhibition of osteoclast markers, such as tartrate-resistant acid phosphatase, integrin β3, and MMP9. Conclusively, our data suggest that bFGF-induced FGFR3-RSK2 signaling may play a critical role during the initiation and progression of RA in terms of FLS proliferation and enhanced osteoclastogenesis, and that kaempferol may be effective as a new treatment for RA.
Collapse
|
12
|
Miyamoto K, Ohkawara B, Ito M, Masuda A, Hirakawa A, Sakai T, Hiraiwa H, Hamada T, Ishiguro N, Ohno K. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS One 2017; 12:e0184388. [PMID: 28926590 PMCID: PMC5604944 DOI: 10.1371/journal.pone.0184388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA) pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI), down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator), and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling) and Mmp13 (matrix metalloproteinase 13). Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Tadahiro Sakai
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Hiraiwa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Hamada
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Shao X, Chen S, Yang D, Cao M, Yao Y, Wu Z, Li N, Shen N, Li X, Song X, Qian Y. FGF2 cooperates with IL-17 to promote autoimmune inflammation. Sci Rep 2017; 7:7024. [PMID: 28765647 PMCID: PMC5539112 DOI: 10.1038/s41598-017-07597-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 01/29/2023] Open
Abstract
IL-17 is a pro-inflammatory cytokine implicated a variety of autoimmune diseases. We have recently reported that FGF2 cooperates with IL-17 to protect intestinal epithelium during dextran sodium sulfate (DSS)-induced colitis. Here, we report a pathogenic role of the FGF2-IL-17 cooperation in the pathogenesis of autoimmune arthritis. Combined treatment with FGF2 and IL-17 synergistically induced ERK activation as well as the production of cytokines and chemokines in human synovial intimal resident fibroblast-like synoviocytes (FLS). Furthermore, ectopic expression of FGF2 in mouse joints potentiated IL-17-induced inflammatory cytokine and chemokine production in the tissue. In the collagen-induced arthritis (CIA) model, while ectopic expression of FGF2 in vivo exacerbated tissue inflammation and disease symptom in the wild-type controls, the effect was largely blunted in Il17a−/− mice. Taken together, our study suggests that FGF2 cooperates with IL-17 to promote the pathogenesis of autoimmune arthritis by cooperating with IL-17 to induce inflammatory response.
Collapse
Affiliation(s)
- Xinrui Shao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Siyuan Chen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Daping Yang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Mengtao Cao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yikun Yao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Zhengxi Wu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Ningli Li
- Shanghai Institute of Immunology, Institute of medical sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Shen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Xinyang Song
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Youcun Qian
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
| |
Collapse
|
14
|
Seifi M, Lotfi A, Badiee MR, Abdolazimi Z, Amdjadi P, Bargrizan M. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption. CELL JOURNAL 2016; 18:271-80. [PMID: 27551674 PMCID: PMC4992183 DOI: 10.22074/cellj.2016.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/30/2015] [Indexed: 12/02/2022]
Abstract
Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study
sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100
and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group
(CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS)
and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium
coil spring was placed between the first molar and the incisor on the right side of maxilla.
Twenty-one days later, the rats were sacrificed. Histopathological sections were made to
assess the number and area of resorption lacunae, number of blood vessels, osteoclasts
and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90
and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and
Howship’s lacunae were significantly higher in E1000 compared to CP (P<0.05). Conclusion Tooth movement as the outcome of bone remodeling is concomitant with
the formation of sterile necrosis in the periodontal ligament following blocked blood supply. Thus, bFGF can significantly decrease the risk of root resorption by providing more
oxygen and angiogenesis.
Collapse
Affiliation(s)
- Massoud Seifi
- Department of Orthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Lotfi
- Department of Oral and Maxillofacial Pathology, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Badiee
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Abdolazimi
- Department of Pedodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Amdjadi
- Department of Dental Materials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Bargrizan
- Department of Pedodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes. Clin Sci (Lond) 2016; 130:667-81. [PMID: 26811540 PMCID: PMC4797417 DOI: 10.1042/cs20150622] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Angiogenesis is an important event in the process of arthritis. Stimulating chondrocytes with IL-1β increased the expression of FGF-2, via the IL-1RI/ROS/AMPK/p38/NF-κB signalling pathway. FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis both in vitro and in vivo. Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis.
Collapse
|
16
|
Lauzier A, Lavoie RR, Charbonneau M, Gouin-Boisvert B, Harper K, Dubois CM. Snail Is a Critical Mediator of Invadosome Formation and Joint Degradation in Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:359-74. [PMID: 26704941 DOI: 10.1016/j.ajpath.2015.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Progressive cartilage destruction, mediated by invasive fibroblast-like synoviocytes, is a central feature in the pathogenesis of rheumatoid arthritis (RA). Members of the Snail family of transcription factors are required for cell migration and invasion, but their role in joint destruction remains unknown. Herein, we demonstrate that Snail is essential for the formation of extracellular matrix-degrading invadosomal structures by synovial cells from collagen-induced arthritis (CIA) rats and RA patients. Mechanistically, Snail induces extracellular matrix degradation in synovial cells by repressing PTEN, resulting in increased phosphorylation of platelet-derived growth factor receptor and activation of the phosphatidylinositol 3-kinase/AKT pathway. Of significance, Snail is overexpressed in synovial cells and tissues of CIA rats and RA patients, whereas knockdown of Snail in CIA joints prevents cartilage invasion and joint damage. Furthermore, Snail expression is associated with an epithelial-mesenchymal transition gene signature characteristic of transglutaminase 2/transforming growth factor-β activation. Transforming growth factor-β and transglutaminase 2 stimulate Snail-dependent invadosome formation in rat and human synoviocytes. Our results identify the Snail-PTEN platelet-derived growth factor receptor/phosphatidylinositol 3-kinase axis as a novel regulator of the prodestructive invadosome-forming phenotype of synovial cells. New therapies for RA target inflammation, and are only partly effective in preventing joint damage. Blocking Snail and/or its associated gene expression program may provide an additional tool to improve the efficacy of treatments to prevent joint destruction.
Collapse
Affiliation(s)
- Annie Lauzier
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roxane R Lavoie
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Béatrice Gouin-Boisvert
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kelly Harper
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
17
|
Katsuyama T, Otsuka F, Terasaka T, Inagaki K, Takano-Narazaki M, Matsumoto Y, Sada KE, Makino H. Regulatory effects of fibroblast growth factor-8 and tumor necrosis factor-α on osteoblast marker expression induced by bone morphogenetic protein-2. Peptides 2015; 73:88-94. [PMID: 26409788 DOI: 10.1016/j.peptides.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
BMP induces osteoblast differentiation, whereas a key proinflammatory cytokine, TNF-α, causes inflammatory bone damage shown in rheumatoid arthritis. FGF molecules are known to be involved in bone homeostasis. However, the effects of FGF-8 on osteoblast differentiation and the interaction between FGF-8, BMPs and TNF-α have yet to be clarified. Here we investigated the effects of FGF-8 in relation to TNF-α actions on BMP-2-induced osteoblast marker expression using myoblast cell line C2C12, osteoblast precursor cell line MC3T3-E1 and rat calvarial osteoblasts. It was revealed that FGF-8 inhibited BMP-2-induced expression of osteoblast differentiation markers, including Runx2, osteocalcin, alkaline phosphatase, type-1 collagen and osterix, in a concentration-dependent manner. The inhibitory effects of FGF-8 on BMP-induced osteoblast differentiation and Smad1/5/8 activation were enhanced in the presence of TNF-α action. FGF-8 also inhibited BMP-2-induced expression of Wnt5a, which activates a non-canonical Wnt signaling pathway. FGF-8 had no significant influence on the expression levels of TNF receptors, while FGF-8 suppressed the expression of inhibitory Smad6 and Smad7, suggesting a possible feedback activity through FGF to BMP receptor (BMPR) signaling. Of note, inhibition of ERK activity and FGF receptor (FGFR)-dependent protein kinase, but not JNK or NFκB pathway, suppressed the FGF-8 actions on BMP-induced osteoblast differentiation. FGF-8 was revealed to suppress BMP-induced osteoblast differentiation through the ERK pathway and the effects were enhanced by TNF-α. Given the finding that FGF-8 expression was increased in synovial tissues of rheumatoid arthritis, the functional interaction between FGFR and BMPR signaling may be involved in the development process of inflammatory bone damage.
Collapse
Affiliation(s)
- Takayuki Katsuyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
| | - Tomohiro Terasaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Kenichi Inagaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Mariko Takano-Narazaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yoshinori Matsumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Ken-Ei Sada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Hirofumi Makino
- Okayama University Hospital, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
18
|
Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis—two unequal siblings. Nat Rev Rheumatol 2015. [DOI: 10.1038/nrrheum.2015.95] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Design, synthesis and preliminary biological evaluation of C-8 substituted guanine derivatives as small molecular inhibitors of FGFRs. Bioorg Med Chem Lett 2015; 25:1556-60. [DOI: 10.1016/j.bmcl.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/20/2023]
|
20
|
Kawaguchi H, Katagiri M, Chikazu D. Osteoclastic bone resorption through receptor tyrosine kinase and extracellular signal-regulated kinase signaling in mature osteoclasts. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0257-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Chen YY, Brown NJ, Jones R, Lewis CE, Mujamammi AH, Muthana M, Seed MP, Barker MD. A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice. Angiogenesis 2013; 17:207-19. [PMID: 24129822 PMCID: PMC3898417 DOI: 10.1007/s10456-013-9389-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 09/23/2013] [Indexed: 11/30/2022]
Abstract
The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the surface of vascular endothelial cells stimulates many steps in the angiogenic pathway. Inhibition of this interaction is proving of value in moderating the neovascularization accompanying age-related macular degeneration and in the treatment of cancer. Tissue inhibitor of metalloproteinases-3 (TIMP-3) has been shown to be a natural VEGFR-2 specific antagonist-an activity that is independent of its ability to inhibit metalloproteinases. In this investigation we localize this activity to the C-terminal domain of the TIMP-3 molecule and characterize a short peptide, corresponding to part of this domain, that not only inhibits all three VEGF-family receptors, but also fibroblast growth factor and platelet-derived growth factor receptors. This multiple-receptor inhibition may explain why the peptide was also seen to be a powerful inhibitor of tumour growth and also a partial inhibitor of arthritic joint inflammation in vivo.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Andres C, Hasenauer J, Ahn HS, Joseph EK, Isensee J, Theis FJ, Allgöwer F, Levine JD, Dib-Hajj SD, Waxman SG, Hucho T. Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia. Pain 2013; 154:2216-2226. [PMID: 23867734 DOI: 10.1016/j.pain.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/04/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
Abstract
UNLABELLED Growth factors such as nerve growth factor and glial cell line-derived neurotrophic factor are known to induce pain sensitization. However, a plethora of other growth factors is released during inflammation and tissue regeneration, and many of them are essential for wound healing. Which wound-healing factors also alter the sensitivity of nociceptive neurons is not well known. We studied the wound-healing factor, basic fibroblast growth factor (bFGF), for its role in pain sensitization. Reverse transcription polymerase chain reaction showed that the receptor of bFGF, FGFR1, is expressed in lumbar rat dorsal root ganglia (DRG). We demonstrated presence of FGFR1 protein in DRG neurons by a recently introduced quantitative automated immunofluorescent microscopic technique. FGFR1 was expressed in all lumbar DRG neurons as quantified by mixture modeling. Corroborating the mRNA and protein expression data, bFGF induced Erk1/2 phosphorylation in nociceptive neurons, which could be blocked by inhibition of FGF receptors. Furthermore, bFGF activated Erk1/2 in a dose- and time-dependent manner. Using single-cell electrophysiological recordings, we found that bFGF treatment of DRG neurons increased the current-density of NaV1.8 channels. Erk1/2 inhibitors abrogated this increase. Importantly, intradermal injection of bFGF in rats induced Erk1/2-dependent mechanical hyperalgesia. PERSPECTIVE Analyzing intracellular signaling dynamics in nociceptive neurons has proven to be a powerful approach to identify novel modulators of pain. In addition to describing a new sensitizing factor, our findings indicate the potential to investigate wound-healing factors for their role in nociception.
Collapse
Affiliation(s)
- Christine Andres
- Max Planck Institute for Molecular Genetics, Berlin, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Department of Neurology, Yale University School of Medicine, New Haven, CT, USA Center for Neuroscience and Regeneration Research, New Haven, CT, USA Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA Klinik für Anästhesiologie und Operative Intensivmedizin, Experimentelle Anästhesiologie und Schmerzforschung, Uniklinik Köln, Köln, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mohan SK, Rani SG, Chiu IM, Yu C. WITHDRAWN: Interaction of FGF1 with a novel anti-angiogenic drug SSR128129E. Arch Biochem Biophys 2012:S0003-9861(12)00231-7. [PMID: 22683470 DOI: 10.1016/j.abb.2012.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Sepuru K Mohan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
24
|
Lu D, Xia Y, Tong B, Zhang C, Pan R, Xu H, Yang X, Dai Y. In vitro anti-angiogenesis effects and active constituents of the saponin fraction from Gleditsia sinensis. Integr Cancer Ther 2012; 13:446-57. [PMID: 22505594 DOI: 10.1177/1534735412442377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The anomalous fruits of Gleditsia sinensis Lam. (Leguminosae), a crude drug in China, have long been used in traditional Chinese medicine for the treatment of various diseases. The saponin fraction isolated from the fruits (SFGS) is considered as the active component for the antitumor activity of this crude drug. OBJECTIVES The present study was performed to investigate the anti-angiogenesis activities and active constituents of SFGS. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with SFGS in the presence or absence of basic fibroblast growth factor (bFGF) in vitro. The proliferation, migration, and tube formation were studied by MTT, Transwell, and 2D Matrigel assays, respectively. The cell cycle and apoptosis were analyzed by flow cytometry. Enzyme-linked immunosorbent assay for protein expression of vascular endothelial growth factor (VEGF) and western blot analysis for caspase-3, caspase-8, and caspase-9 as well as Fas were performed. In addition, the effects of 13 saponin compounds isolated from SFGS on the tube formation of HUVECs were screened, and the structure-activity relationships were discussed. RESULTS SFGS, at concentrations (1, 3, and 10 µg/mL) without significant cytotoxicity on endothelial cells, significantly inhibited the proliferation, migration, and tube formation of HUVECs induced by bFGF (10 ng/mL). It moderately arrested the cell cycle to G1 phase but greatly induced cell apoptosis and increased the expressions of caspases-3, caspase-8, and Fas but not caspase-9 in HUVECs. Moreover, SFGS did not affect the bFGF-induced autosecretion of VEGF from endothelial cells. Among the 13 saponin compounds tested, gleditsiosides B, I, J, O, and Q showed inhibition of the tube formation at a concentration of 3 µM, and only gleditsioside B exerted significant inhibition at 1 µM. CONCLUSION SFGS is substantially able to prevent angiogenesis by interfering with multiple steps. The findings provide a new explanation for the antitumor effects of G sinensis fruits. Gleditsiosides B, I, J, O, and Q are probably the main active constituents of SFGS.
Collapse
Affiliation(s)
- Dan Lu
- China Pharmaceutical University, Nanjing, China
| | - YuFeng Xia
- China Pharmaceutical University, Nanjing, China
| | - Bei Tong
- China Pharmaceutical University, Nanjing, China
| | | | - Rong Pan
- China Pharmaceutical University, Nanjing, China
| | - Huan Xu
- China Pharmaceutical University, Nanjing, China
| | - Xue Yang
- China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Fukai A, Kamekura S, Chikazu D, Nakagawa T, Hirata M, Saito T, Hosaka Y, Ikeda T, Nakamura K, Chung UI, Kawaguchi H. Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. ACTA ACUST UNITED AC 2011; 64:198-203. [DOI: 10.1002/art.33324] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Isono M, Suzuki T, Hosono K, Hayashi I, Sakagami H, Uematsu S, Akira S, DeClerck YA, Okamoto H, Majima M. Microsomal prostaglandin E synthase-1 enhances bone cancer growth and bone cancer-related pain behaviors in mice. Life Sci 2011; 88:693-700. [PMID: 21324324 DOI: 10.1016/j.lfs.2011.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 11/19/2022]
Abstract
AIMS Nonsteroidal anti-inflammatory drugs are a therapeutic modality for chronic cancer pain arising from bone metastases. Chronic administration of a cyclooxygenase (COX)-2 inhibitor is effective to bone cancer-related pain. However, adverse cardiovascular effects have limited COX-2 inhibitor therapy, and elucidation of better targets for blocking prostaglandin (PG) biosynthesis is necessary. Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that catalyzes isomerization of the endoperoxide PGH(2) to PGE(2). To investigate the validity of mPGES-1 as a therapeutic target, we evaluated bone cancer pain-related behaviors in mPGES-1 knockout (PGES-1-/-) mice. MAIN METHODS Lewis lung carcinoma cells (LLCCs) were injected into the intramedullary space of the femur of wild-type (WT) and PGES-1-/- mice. Pain-related behaviors were evaluated. KEY FINDINGS PGES-1-/- mice exhibited reduced tumor growth in bone marrow compared to WT. The expression of pro-calcitonin gene-related peptide (CGPR) in the dorsal root ganglia of L(1-5) was significantly higher in WT mice at day 14, whereas it was unchanged in mPGES-1 mice. In the observation of pain-related behaviors, mPGES-1-/- mice exhibited significantly fewer spontaneous flinches and their onset was several days later than WT. The appearance of other pain-related behaviors in mPGES-1-/- mice was also delayed as compared to WT. LLCC-injected WT mice treated with a COX-2 inhibitor, celecoxib, exhibited similar temporal changes to mPGES1-/-. SIGNIFICANCE The present results suggest that mPGES-1 plays a crucial role in the enhancement of bone cancer growth and bone cancer pain, and that inhibition of mPGES-1 may have clinical utility in the management of bone cancer pain.
Collapse
Affiliation(s)
- Masako Isono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Visvanathan S, Rahman MU, Keystone E, Genovese M, Klareskog L, Hsia E, Mack M, Buchanan J, Elashoff M, Wagner C. Association of serum markers with improvement in clinical response measures after treatment with golimumab in patients with active rheumatoid arthritis despite receiving methotrexate: results from the GO-FORWARD study. Arthritis Res Ther 2010; 12:R211. [PMID: 21083889 PMCID: PMC3046519 DOI: 10.1186/ar3188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/18/2010] [Accepted: 11/17/2010] [Indexed: 11/24/2022] Open
Abstract
Introduction The goal of this study was to identify serum markers that are modulated by treatment with golimumab with or without methotrexate (MTX) and are associated with clinical response. Methods Sera were collected at weeks 0 and 4 from a total of 336 patients (training dataset, n = 100; test dataset, n = 236) from the GO-FORWARD study of patients with active rheumatoid arthritis despite MTX. Patients were randomly assigned to receive placebo plus MTX; golimumab, 100 mg plus placebo; golimumab, 50 mg plus MTX; or golimumab, 100 mg plus MTX. Subcutaneous injections were administered every 4 weeks. Samples were tested for select inflammatory, bone, and cartilage markers and for protein profiling using multianalyte profiles. Results Treatment with golimumab with or without MTX resulted in significant decreases in a variety of serum proteins at week 4 as compared with placebo plus MTX. The American College of Rheumatology (ACR) 20, ACR 50, and Disease Activity Score (DAS) 28 responders showed a distinct biomarker profile compared with nonresponding patients. Conclusions ACR 20 and ACR 50 responders among the golimumab/golimumab + MTX-treated patients had a distinct change from baseline to week 4 in serum protein profile as compared with nonresponders. Some of these changed markers were also associated with multiple clinical response measures and improvement in outcome measures in golimumab/golimumab + MTX-treated patients. Although the positive and negative predictive values of the panel of markers were modest, they were stronger than C-reactive protein alone in predicting clinical response to golimumab. Trial registration http://ClinicalTrials.gov identification number: NCT00264550.
Collapse
Affiliation(s)
- Sudha Visvanathan
- Centocor Research and Development, Inc, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cartilage engineering from mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 123:163-200. [PMID: 20535603 DOI: 10.1007/10_2010_67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.
Collapse
|
29
|
Abstract
Osteoporosis and arthritis are highly prevalent diseases and a significant cause of morbidity and mortality worldwide. These diseases result from aberrant tissue remodeling leading to weak, fracture-prone bones or painful, dysfunctional joints. The nuclear factor of activated T cells (NFAT) transcription factor family controls diverse biologic processes in vertebrates. Here, we review the scientific evidence that links NFAT-regulated gene transcription to bone and joint pathology. A particular emphasis is placed on the role of NFATs in bone resorption and formation by osteoclasts and osteoblasts, respectively. In addition, emerging data that connect NFATs with cartilage biology, angiogenesis, nociception, and neurogenic inflammation are explored. The goal of this article is to highlight the importance of tissue remodeling in musculoskeletal disease and situate NFAT-driven cellular responses within this context to inspire future research endeavors.
Collapse
Affiliation(s)
- Despina Sitara
- Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Pan R, Gao XH, Li Y, Xia YF, Dai Y. Anti-arthritic effect of scopoletin, a coumarin compound occurring in Erycibe obtusifolia Benth stems, is associated with decreased angiogenesis in synovium. Fundam Clin Pharmacol 2009; 24:477-90. [PMID: 19845767 DOI: 10.1111/j.1472-8206.2009.00784.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scopoletin is the main constituent of coumarin found in the stems of Erycibe obtusifolia Benth, a traditional Chinese medicine used in the treatment of rheumatoid arthritis. We have previously demonstrated that scopoletin is able to decrease the serum level of uric acid in hyperuricemic mice induced by potassium oxonate, and attenuate croton oil-induced inflammation. In the present study, we evaluated the anti-arthritic effects of scopoletin in rat adjuvant-induced arthritis by assessing paw swelling, pathology, and synovial angiogenesis. It was found that scopoletin, injected intraperitoneally at doses of 50, 100 mg/kg, reduced both inoculated and non-inoculated paw swelling as well as articular index scores, and elevated the mean body weight of adjuvant-induced arthritic rats. Rats treated with higher dose of scopoletin showed a near-normal histological architecture of the joints and a reduced new blood vessel formation in the synovial tissues. Furthermore, scopoletin downregulated the overexpression of vascular endothelial growth factor, basic fibroblast growth factor and interleukin 6 in the synovial tissues of adjuvant-induced arthritic rats. In conclusion, scopoletin is capable of ameliorating clinical symptoms of rat adjuvant-induced arthritis, by reducing numbers of new blood vessels in the synovium and the production of important endogenous angiogenic inducers. Therefore, this compound may be a potential agent for angiogenesis-related diseases and could serve as a structural base for screening more potent synthetic analogs.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 1 Shennong Road, Nanjing 210038, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
31
|
Jin RL, Park SR, Choi BH, Min BH. Scaffold-Free Cartilage Fabrication System Using Passaged Porcine Chondrocytes and Basic Fibroblast Growth Factor. Tissue Eng Part A 2009; 15:1887-95. [DOI: 10.1089/ten.tea.2008.0349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ri Long Jin
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - So Ra Park
- Department of Physiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byung Hyune Choi
- Division of Biomedical and Bioengineering Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
- Departmant of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Cell Theraphy Center, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Oki K, Tsuji F, Ohashi K, Kageyama M, Aono H, Sasano M. The investigation of synovial genomic targets of bucillamine with microarray technique. Inflamm Res 2009; 58:571-84. [PMID: 19290479 DOI: 10.1007/s00011-009-0021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/16/2008] [Accepted: 02/01/2009] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1 beta-stimulated human fibroblast-like synovial cells (FLS). METHODS Normal human FLS were treated with IL-1 beta in the presence or absence of 10 and 100 microM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis. RESULTS Numerous pathways were activated by IL-1 beta stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1 beta. CONCLUSIONS Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1 beta in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.
Collapse
Affiliation(s)
- Kenji Oki
- Research & Development Center, Santen Pharmaceutical Co., Ltd., 8916-16 Takayama-cho, Ikoma-shi, Nara, 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Kawaguchi H. [Bench to bedside of osteoarthritis: where we are and to go]. Nihon Ronen Igakkai Zasshi 2009; 46:121-124. [PMID: 19491512 DOI: 10.3143/geriatrics.46.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
34
|
Regulation of osteoarthritis development by Wnt-beta-catenin signaling through the endochondral ossification process. J Bone Miner Res 2009; 24:8-11. [PMID: 19016582 DOI: 10.1359/jbmr.081115] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Ellman MB, An HS, Muddasani P, Im HJ. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 2008; 420:82-9. [PMID: 18565695 DOI: 10.1016/j.gene.2008.04.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/09/2008] [Accepted: 04/17/2008] [Indexed: 01/08/2023]
Abstract
Two members of the fibroblast growth factor (FGF) family, basic FGF (bFGF) and FGF-18, have been implicated in the regulation of articular and intervertebral disc (IVD) cartilage homeostasis. Studies on bFGF from a variety of species have yielded contradictory results with regards to its precise role in cartilage matrix synthesis and degradation. In contrast, FGF-18 is a well-known anabolic growth factor involved in chondrogenesis and articular cartilage repair. In this review, we examined the biological actions of bFGF and FGF-18 in articular and IVD cartilage, the specific cell surface receptors bound by each factor, and the unique signaling cascades and molecular pathways utilized to exert their biological effects. Evidence suggests that bFGF selectively activates FGF receptor 1 (FGFR1) to exert degradative effects in both human articular chondrocytes and IVD tissue via upregulation of matrix-degrading enzyme activity, inhibition of matrix production, and increased cell proliferation resulting in clustering of cells seen in arthritic states. FGF-18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating FGFR3, increasing matrix formation and cell differentiation while inhibiting cell proliferation, leading to dispersed cells surrounded by abundant matrix. The results from in vitro and in vivo studies suggest the potential usefulness of bFGF and FGFR1 antagonists, as well as FGF-18 and FGFR3 agonists, as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future.
Collapse
Affiliation(s)
- Michael B Ellman
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| | | | | | | |
Collapse
|
36
|
Im HJ, Li X, Muddasani P, Kim GH, Davis F, Rangan J, Forsyth CB, Ellman M, Thonar EJMA. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J Cell Physiol 2008; 215:452-63. [PMID: 17960584 PMCID: PMC2893571 DOI: 10.1002/jcp.21317] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway.
Collapse
Affiliation(s)
- Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hasegawa M, Nakoshi Y, Muraki M, Sudo A, Kinoshita N, Yoshida T, Uchida A. Expression of large tenascin-C splice variants in synovial fluid of patients with rheumatoid arthritis. J Orthop Res 2007; 25:563-8. [PMID: 17262825 DOI: 10.1002/jor.20366] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tenascin-C (TN-C) is a hexameric glycoprotein component of extracellular matrix, and alternative RNA splicing creates two major TN-C size variants (the small and large variants). The large TN-C variants play key roles in many pathologic conditions in adults, including tumorigenesis, regeneration, and inflammation. This cross-sectional study compared levels of large TN-C variants in synovial fluid of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Synovial fluid samples were obtained from knees of 26 patients with advanced RA and 79 with advanced OA. Expression of TN-C splice variants was examined using Western blotting. The levels of large TN-C variants in synovial fluid were determined by an enzyme-linked immunosorbent assay. Synovium were analyzed for TN-C by immunohistochemistry. Immunoblotting showed the presence of large TN-C variants in synovial fluid from patients with RA and OA. However, levels of large TN-C variants were fourfold higher in RA samples compared with OA samples (p < 0.01). Synovial fluid levels of TN-C in RA did not correlate with C-reactive protein levels. Immunohistochemistry of the synovium showed stronger reactivity in RA samples than in OA samples. These results indicate that local synthesis of TN-C is increased during rheumatic disease.
Collapse
Affiliation(s)
- Masahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Golan I, Nedvetzki S, Golan I, Eshkar-Sebban L, Levartovsky D, Elkayam O, Caspi D, Aamar S, Amital H, Rubinow A, Naor D. Expression of extra trinucleotide in CD44 variant of rheumatoid arthritis patients allows generation of disease-specific monoclonal antibody. J Autoimmun 2007; 28:99-113. [PMID: 17383158 DOI: 10.1016/j.jaut.2007.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Selective targeting of cells engaged in pathological activities is a major challenge for medical research. We generated monoclonal antibodies (mAbs) that exclusively bind, at concentrations ranging from 2 to 100 microg/ml, to a modified CD44 variant (designated CD44vRA) expressed on synovial fluid cells from joints of rheumatoid arthritis (RA) patients. These mAbs cross-reacted with keratinocytes expressing wild type CD44vRA (CD44v3-v10) only at a relatively high concentration (200 microg/ml). Sequence analysis of CD44vRA cDNA revealed, in 33 out of 43 RA and psoriatic arthritis patients, an extra intron-derived trinucleotide, CAG, which allows translation of an extra alanine. This insertion imposes a configurational change on the cell surface CD44 of RA synovial fluid cells, creating an immunogenic epitope and potentiating the ability to produce disease-specific antibodies. Indeed, the anti-CD44vRA mAbs (designated F8:33) were able to induce apoptosis in synovial fluid cells from RA patients, but not in peripheral blood leukocytes from the same patients, in keratinocytes from normal donors or in synovial fluid cells from osteoarthritis patients. Furthermore, injection of anti-CD44vRA mAbs reduced joint inflammation in DBA/1 mice with collagen-induced arthritis. These findings show that anti-CD44vRA mAbs are both bioactive and RA-specific.
Collapse
MESH Headings
- Adult
- Aged
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/therapy
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Epitopes
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Mice
- Mice, Inbred DBA
- Middle Aged
- Molecular Sequence Data
- Synovial Fluid/immunology
- Transfection
Collapse
Affiliation(s)
- Itshak Golan
- The Lautenberg Center for General and Tumor Immunology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Malemud CJ. Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin Chim Acta 2006; 375:10-9. [PMID: 16893535 DOI: 10.1016/j.cca.2006.06.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 11/20/2022]
Abstract
Adult rheumatoid arthritis (RA), a systemic autoimmune disorder of unknown etiology, is characterized by dysfunctional cellular and humoral immunity, enhanced migration and attachment of peripheral macrophages and pro-inflammatory leukocytes to the synovium and articular cartilage of diarthrodial joints. The progressive destruction of cartilage and bone in RA is a result of elevated pro-inflammatory cytokine gene expression, synovial neovascularization, proteinase-mediated dissolution of articular cartilage matrix and osteoclast-mediated subchondral bone resorption. Juvenile chronic arthritis (JCA) is disease with manifestations similar to adult RA that occurs in childhood. JCA usually causes precocious joint destruction and often also presents with evidence of growth plate anomalies and reduced stature. Three proteins play an integral role in both adult RA and JCA. These are somatotropin (also called pituitary growth hormone (GH)), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). GH is responsible for regulating long bone growth and skeletal maturation through its capacity to stimulate insulin-like growth factor-I (IGF-1) synthesis by hepatocytes. Mechanisms responsible for growth plate disturbances and short stature in children with JCA include deficient GH production, GH-insensitivity resulting from defects in the GH receptor, suppressed IGF-1 synthesis or neutralization of IGF-1 action by IGF-1 binding proteins (IGFBPs). In addition, GH has also been implicated in perpetuating inflammation and pain in adult RA. VEGF has been shown to be the critical angiogenesis factor responsible for vascular proliferation and blood vessel invasion of the synovial lining membrane in RA. Acidic FGF (FGF-1) and basic FGF (FGF-2) have also been implicated in aberrant synoviocyte proliferation (i.e. synovial hyperplasia) and apoptosis resistance in adult RA.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine/Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, 2061 Cornell Road, Room 207 Cleveland, OH 44106-5076, USA.
| |
Collapse
|
40
|
Abe K, Aslam A, Walls AF, Sato T, Inoue H. Up-regulation of protease-activated receptor-2 by bFGF in cultured human synovial fibroblasts. Life Sci 2006; 79:898-904. [PMID: 16687155 DOI: 10.1016/j.lfs.2006.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/25/2005] [Accepted: 03/06/2006] [Indexed: 11/28/2022]
Abstract
Protease-activated receptors (PARs) have been implicated in the development of acute and chronic inflammatory responses. We have examined the expression of mRNA for PARs and their regulation by growth factors and cytokines in synovial fibroblasts derived from patients with rheumatoid arthritis (RA). Messenger RNA for PAR-1, -2 and -3 was detected in these cells, but not that for PAR-4. Expression of mRNA for PAR-2 was up-regulated by bFGF in a concentration-dependent manner, whereas expression of mRNA for PAR-1 and PAR-3 was not affected. Levels of mRNA encoding PAR-1, PAR-2 and PAR-3 did not increase in response to IL-1beta and TNF-alpha. Expression of mRNA for PAR-2 was maximal 12 h after addition of bFGF, and maximal levels of immunoreactive PAR-2 were reached after 24 h. Furthermore, PAR-2 agonist peptide (SLIGKV-NH(2)), but not the inactive reverse peptide (VKGILS-NH(2)), induced transitory cytosolic Ca(2+) mobilization in cells, and its response was increased by pretreatment with bFGF. An important role could be played by bFGF in the regulation of functional PAR-2 expression in cultured RA synovial fibroblasts.
Collapse
Affiliation(s)
- Kazuki Abe
- Pharmacological Research Department, Minophagen Pharmaceutical Co.,2-2-3, Komatsubara, Zama-shi, Kanagawa-228-0002, Japan
| | | | | | | | | |
Collapse
|
41
|
Kimoto A. [Three-dimensional trabecular bone microarchitecture in inflammatory bone destruction]. Nihon Yakurigaku Zasshi 2006; 127:289-96. [PMID: 16755081 DOI: 10.1254/fpj.127.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 2006; 8:100-11. [PMID: 16097039 DOI: 10.1002/jgm.819] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF-2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo. METHODS Lapine articular chondrocytes overexpressing a lacZ or a human FGF-2 gene sequence were encapsulated in alginate and further characterized. The resulting lacZ or FGF-2 spheres were applied to cartilage defects in the knee joints of rabbits. In vivo, cartilage repair was assessed qualitatively and quantitatively at 3 and 14 weeks after implantation. RESULTS In vitro, bioactive FGF-2 was secreted, leading to a significant increase in the cell numbers in FGF-2 spheres. In vivo, FGF-2 continued to be expressed for at least 3 weeks without leading to differences in FGF-2 concentrations in the synovial fluid between treatment groups. Histological analysis revealed no adverse pathologic effects on the synovial membrane at any time point. FGF-2 gene transfer enhanced type II collagen expression and individual parameters of chondrogenesis, such as the cell morphology and architecture of the new tissue. Overall articular cartilage repair was significantly improved at both time points in vivo. CONCLUSIONS The data suggest that localized overexpression of FGF-2 enhances the repair of cartilage defects via stimulation of chondrogenesis, without adverse effects on the synovial membrane. These results may lead to the development of safe gene-based therapies for human articular cartilage defects.
Collapse
Affiliation(s)
- Gunter Kaul
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zittermann SI, Issekutz AC. Basic fibroblast growth factor (bFGF, FGF-2) potentiates leukocyte recruitment to inflammation by enhancing endothelial adhesion molecule expression. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:835-46. [PMID: 16507899 PMCID: PMC1606526 DOI: 10.2353/ajpath.2006.050479] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basic fibroblast growth factor (bFGF, FGF-2) is a potent angiogenic factor and endothelial cell mitogen. Although bFGF levels are increased in chronically inflamed tissue, its role in inflammation is unclear. We investigated the effect of bFGF on acute dermal inflammation and the recruitment of monocytes, T cells, and neutrophils. Leukocyte recruitment to inflamed sites was quantified with radiolabeled leukocytes. Intradermal injection of bFGF in rats did not induce leukocyte recruitment or inflammation. However, the recruitment of leukocytes to inflammation induced by tumor necrosis factor-alpha, interferon-gamma, C5a, or a delayed hypersensitivity reaction was enhanced by bFGF by 55 to 132% (P < 0.05). Either acute or prolonged bFGF treatment of dermal sites had this effect. The potentiating effect of bFGF on leukocyte recruitment was also seen in joints. There was no associated modulation of vascular permeability, blood flow, or angiogenesis in the sites by bFGF. However, the expression of the endothelial cell adhesion molecules (CAMs) for leukocytes, P-selectin, E-selectin, and ICAM-1, was significantly up-regulated in the inflamed tissue by bFGF, as quantified by radiolabeled anti-CAM antibody binding in vivo. Thus, although not directly proinflammatory, bFGF synergistically potentiates inflammatory mediator-induced leukocyte recruitment, at least in part, by enhancing CAM up-regulation on endothelium.
Collapse
Affiliation(s)
- Sandra I Zittermann
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
44
|
Katagiri M, Ogasawara T, Hoshi K, Chikazu D, Kimoto A, Noguchi M, Sasamata M, Harada SI, Akama H, Tazaki H, Chung UI, Takato T, Nakamura K, Kawaguchi H. Suppression of adjuvant-induced arthritic bone destruction by cyclooxygenase-2 selective agents with and without inhibitory potency against carbonic anhydrase II. J Bone Miner Res 2006; 21:219-27. [PMID: 16418777 DOI: 10.1359/jbmr.051025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 08/15/2005] [Accepted: 10/31/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED In vitro assays revealed that COX-2 inhibitors with CA II inhibitory potency suppressed both differentiation and activity of osteoclasts, whereas that without the potency reduced only osteoclast differentiation. However, all COX-2 inhibitors similarly suppressed bone destruction in adjuvant-induced arthritic rats, indicating that suppression of osteoclast differentiation is more effective than that of osteoclast activity for the treatment. INTRODUCTION Cyclooxygenase (COX)-2 and carbonic anhydrase II (CA II) are known to play important roles in the differentiation of osteoclasts and the activity of mature osteoclasts, respectively. Because several COX-2 selective agents were recently found to possess an inhibitory potency against CA II, this study compared the bone sparing effects of COX-2 selective agents with and without the CA II inhibitory potency. MATERIALS AND METHODS Osteoclast differentiation was determined by the mouse co-culture system of osteoblasts and bone marrow cells, and mature osteoclast activity was measured by the pit area on a dentine slice resorbed by osteoclasts generated and isolated from bone marrow cells. In vivo effects on arthritic bone destruction were determined by radiological and histological analyses of hind-paws of adjuvant-induced arthritic (AIA) rats. RESULTS CA II was expressed predominantly in mature osteoclasts, but not in the precursors. CA II activity was inhibited by sulfonamide-type COX-2 selective agents celecoxib and JTE-522 similarly to a CA II inhibitor acetazolamide, but not by a methylsulfone-type COX-2 inhibitor rofecoxib. In vitro assays clearly revealed that celecoxib and JTE-522 suppressed both differentiation and activity of osteoclasts, whereas rofecoxib and acetazolamide suppressed only osteoclast differentiation and activation, respectively. However, bone destruction in AIA rats was potently and similarly suppressed by all COX-2 selective agents whether with or without CA II inhibitory potency, although only moderately by acetazolamide. CONCLUSIONS Suppression of osteoclast differentiation by COX-2 inhibition is more effective than suppression of mature osteoclast activity by CA II inhibition for the treatment of arthritic bone destruction.
Collapse
Affiliation(s)
- Mika Katagiri
- Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung UI, Kawaguchi H. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. ACTA ACUST UNITED AC 2006; 54:2462-70. [PMID: 16868966 DOI: 10.1002/art.22041] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE By producing instability in mouse knee joints, we attempted to determine the involvement of runt-related transcription factor 2 (RUNX-2), which is required for chondrocyte hypertrophy, in the development of osteoarthritis (OA). METHODS An experimental mouse OA model was created by surgical transection of the medial collateral ligament and resection of the medial meniscus of the knee joints of heterozygous RUNX-2-deficient (Runx2+/-) mice and wild-type littermates. Cartilage destruction and osteophyte formation in the medial tibial cartilage were compared by histologic and radiographic analyses. Localization of type X collagen and matrix metalloproteinase 13 (MMP-13) was examined by immunohistochemistry. Localization of RUNX-2 was determined by X-Gal staining in heterozygous RUNX-2-deficient mice with the lacZ gene insertion at the Runx2-deletion site (Runx2+/lacZ). Messenger RNA levels of type X collagen, MMP-13, and RUNX-2 were examined by real-time reverse transcriptase-polymerase chain reaction analysis. RESULTS RUNX-2 was induced in the articular cartilage of wild-type mice at the early stage of OA, almost simultaneously with type X collagen but earlier than MMP-13. Runx2+/- and Runx2+/lacZ mice showed normal skeletal development and articular cartilage; however, after induction of knee joint instability, they exhibited decreased cartilage destruction and osteophyte formation, along with reduced type X collagen and MMP-13 expression, as compared with wild-type mice. CONCLUSION RUNX-2 contributes to the pathogenesis of OA through chondrocyte hypertrophy and matrix breakdown after the induction of joint instability.
Collapse
|
46
|
Akasaka Y, Abe K, Sato T, Inoue H. Regulation of neurokinin-1 receptor messenger RNA expression in synovial fibroblasts of patients with rheumatoid arthritis. Neuropeptides 2005; 39:467-74. [PMID: 16154193 DOI: 10.1016/j.npep.2005.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/08/2005] [Indexed: 11/16/2022]
Abstract
We examined whether soluble mediators regulate the expression of tachykinin receptor mRNAs in synovial fibroblasts of patients with rheumatoid arthritis (RA). mRNAs encoding long and short isomers of neurokinin 1 receptor (NK1R), and neurokinin 2 receptor (NK2R) were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. Level of long, but not the short, of NK1R mRNA was increased by treatment with 10-100 ng/ml basic fibroblast growth factor (bFGF) or 20 ng/ml tumor necrosis factor-alpha (TNF-alpha), but not with 1ng/ml interleukin 1beta (IL-1beta). TNF-alpha upregulated NK2R mRNA as well as long NK1R mRNA whereas bFGF had no effect on NK2R mRNA. Expression of neurokinin 3 receptor (NK3R) mRNA was not observed in RA fibroblasts, and its expression was not induced by bFGF and TNF-alpha. The basal and increased levels of long NK1R mRNA were inhibited by treatment with 20 microM SU5402, an inhibitor of the tyrosine kinase activity of FGF receptor 1 (FGFR1), or 10 ng/ml transforming growth factor-beta1 (TGF-beta1). SU5402 and TGF-beta1 had no effect on the basal level of short NK1R mRNA. Immunocytochemistry revealed the enhancement by bFGF of immunoreactive NK1Rs in the cells at 24 h after treatment. These results suggest that bFGF, TGF-beta1, and TNF-alpha in synovial tissue and fluid play a role in the regulation of long NK1R expression in synovial fibroblasts of RA patients. It appears that the pathway of downregulation by TGF-beta1 is more dominant in the long NK1R mRNA expression than that of upregulation by bFGF or TNF-alpha. Furthermore, the regulation of short NK1R mRNA expression seems to be performed via a different pathway from that of long isomer mRNA.
Collapse
Affiliation(s)
- Y Akasaka
- Pharmacological Research Department, Minophagen Pharmaceutical Co., 2-2-3 Komatsubara, Zama-shi, Kanagawa 228-0002, Japan
| | | | | | | |
Collapse
|
47
|
Thompson AM, Delaney AM, Hamby JM, Schroeder MC, Spoon TA, Crean SM, Showalter HDH, Denny WA. Synthesis and Structure−Activity Relationships of Soluble 7-Substituted 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridin-2-amines and Related Ureas as Dual Inhibitors of the Fibroblast Growth Factor Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinases. J Med Chem 2005; 48:4628-53. [PMID: 16000000 DOI: 10.1021/jm0500931] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7-Substituted 3-aryl-1,6-naphthyridine-2,7-diamines and related 2-ureas are inhibitors of fibroblast growth factor receptor-1 (FGFR-1) and vascular endothelial growth factor receptor-2 (VEGFR-2). 3-(3,5-Dimethoxyphenyl) and 3-phenyl analogues were prepared from 7-acetamido-2-tert-butylureas by alkylation with benzyl omega-iodoalkyl ethers, debenzylation, and amination, followed by selective cleavage of the 7-N-acetamide. 3-(2,6-Dichlorophenyl) analogues were prepared from the 7-fluoro-2-amine by displacement with substituted alkylamines, followed by selective acylation of the resulting substituted naphthyridine-2,7-diamines with alkyl isocyanates. The 3-(3,5-dimethoxyphenyl) derivatives were low nanomolar inhibitors of both FGFR and VEGFR and were highly selective (>100-fold) over PDGFR and c-Src. Variations in the base strength or spatial position of the 7-side chain base had only small effects on the potency (<5-fold) or selectivity (<20-fold). The 3-(2,6-dichlorophenyl)-2-urea derivatives were slightly less active against VEGFR and less selective, being more effective against PDGFR (ca. 10-fold) and c-Src (ca. 500-fold). The 3-(3,5-dimethoxyphenyl)-1,6-naphthyridines were generally more potent than the corresponding pyrido[2,3-d]pyrimidines against both VEGFR and FGFR (2- to 20-fold), with only slightly increased PDGFR and c-Src activity. The 3-(3,5-dimethoxyphenyl)-1,6-naphthyridine 2-ureas were also low nanomolar inhibitors of the growth of human umbilical vein endothelial cells (HUVECs) stimulated by serum, FGF, or VEGF, at concentrations that did not affect the growth of representative tumor cell lines, and were more (3- to 65-fold) potent than the corresponding pyrido[2,3-d]pyrimidines.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mor A, Abramson SB, Pillinger MH. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 2005; 115:118-28. [PMID: 15885632 DOI: 10.1016/j.clim.2004.12.009] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/24/2004] [Accepted: 12/27/2004] [Indexed: 02/02/2023]
Abstract
Although multiple cell types are present in the rheumatoid joint, the fibroblast-like synovial cell (FLS) is among the most prominent. It is now appreciated that the FLS is not only space-filling, but is directly responsible for cartilage destruction, and also drives both inflammation and autoimmunity. In this article, we consider the normal role of the FLS in healthy joints, and review evidence that implicates the FLS as a central player in the propagation of rheumatoid arthritis.
Collapse
Affiliation(s)
- Adam Mor
- Division of Rheumatology, NYU School of Medicine and The Hospital for Joint Disease, New York, NY 10003, USA
| | | | | |
Collapse
|
49
|
Nakano K, Okada Y, Saito K, Tanaka Y. Induction of RANKL expression and osteoclast maturation by the binding of fibroblast growth factor 2 to heparan sulfate proteoglycan on rheumatoid synovial fibroblasts. ACTA ACUST UNITED AC 2004; 50:2450-8. [PMID: 15334457 DOI: 10.1002/art.20367] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterized by progressive joint destruction. The aim of this study was to clarify the relevance of RA synovial fibroblasts (RASFs) and fibroblast growth factor 2 (FGF-2), which is produced abundantly by RASFs, to the osteoclastogenesis and bone resorption in RA. METHODS Synovial fibroblasts were prepared from the synovial tissues of 10 patients with active RA and 7 patients with osteoarthritis (OA). The expression of RANKL, intercellular adhesion molecule 1 (ICAM-1), FGF receptor 1 (FGFR-1), and heparan sulfate proteoglycan (HSPG) on synovial fibroblasts was measured by FACScan. Osteoclast formation in cocultures of RASFs and peripheral blood mononuclear cells (PBMCs) was evaluated by tartrate-resistant acid phosphatase staining and a pit-formation assay using dentin slices. RESULTS FGF-2 induced the expression of both RANKL and ICAM-1 on RASFs more so than on OA synovial fibroblasts (OASFs). FGF-2-induced up-regulation of RANKL and ICAM-1 was inhibited by anti-FGF-2 antibody. Although FGFR-1 was equally expressed on RASFs and OASFs, HSPG was highly expressed on RASFs. Up-regulation of RANKL by FGF-2 on RASFs was diminished by the removal of heparan sulfate with heparitinase. Osteoclast formation from PBMCs induced by RASFs was inhibited by the addition of either heparitinase, anti-ICAM-1 antibody, anti-FGF-2 antibody, or osteoprotegerin. FGF-2-induced RANKL on RASFs and osteoclast formation were suppressed by an inhibitor of ERK. CONCLUSION FGF-2 was transferred to FGFR-1 through binding to HSPG, which is characteristically expressed on RASFs, resulting in RANKL- and ICAM-1-mediated maturation of osteoclasts via ERK activation. Thus, we propose that FGF-2 not only augments the proliferation of RASFs, but also is involved in osteoclast maturation, which leads to bone destruction in RA.
Collapse
Affiliation(s)
- Kazuhisa Nakano
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | |
Collapse
|
50
|
Kamei D, Yamakawa K, Takegoshi Y, Mikami-Nakanishi M, Nakatani Y, Oh-Ishi S, Yasui H, Azuma Y, Hirasawa N, Ohuchi K, Kawaguchi H, Ishikawa Y, Ishii T, Uematsu S, Akira S, Murakami M, Kudo I. Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin e synthase-1. J Biol Chem 2004; 279:33684-95. [PMID: 15140897 DOI: 10.1074/jbc.m400199200] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the in vivo role of membrane-bound prostaglandin E synthase (mPGES)-1, a terminal enzyme in the PGE2-biosynthetic pathway, using mPGES-1 knockout (KO) mice. Comparison of PGES activity in the membrane fraction of tissues from mPGES-1 KO and wild-type (WT) mice indicated that mPGES-1 accounted for the majority of lipopolysaccharide (LPS)-inducible PGES in WT mice. LPS-stimulated production of PGE2, but not other PGs, was impaired markedly in mPGES-1-null macrophages, although a low level of cyclooxygenase-2-dependent PGE2 production still remained. Pain nociception, as assessed by the acetic acid writhing response, was reduced significantly in KO mice relative to WT mice. This phenotype was particularly evident when these mice were primed with LPS, where the stretching behavior and the peritoneal PGE2 level of KO mice were far less than those of WT mice. Formation of inflammatory granulation tissue and attendant angiogenesis in the dorsum induced by subcutaneous implantation of a cotton thread were reduced significantly in KO mice compared with WT mice. Moreover, collagen antibody-induced arthritis, a model for human rheumatoid arthritis, was milder in KO mice than in WT mice. Collectively, our present results provide unequivocal evidence that mPGES-1 contributes to the formation of PGE2 involved in pain hypersensitivity and inflammation.
Collapse
Affiliation(s)
- Daisuke Kamei
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|