1
|
Wu H, Yuan H, Zhang J, He T, Deng Y, Chen Y, Zhang Y, Chen W, Wu C. Helicobacter pylori upregulates PAD4 expression via stabilising HIF-1α to exacerbate rheumatoid arthritis. Ann Rheum Dis 2024; 83:1666-1676. [PMID: 39107082 PMCID: PMC11671999 DOI: 10.1136/ard-2023-225306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Helicobacter pylori infection has been reported to aggravate rheumatoid arthritis (RA), but the relevant mechanism remains unclear. This study aimed to investigate the underlying pathogenic mechanism of H. pylori infection in the progression of RA. METHODS The Disease Activity Score (DAS-28) and serum anticitrullinated protein antibody (ACPA) levels were compared between H. pylori-negative and H. pylori-positive patients with RA. MH7A cells were stimulated with polyclonal ACPA purified from the peripheral blood of patients with RA. The citrullination levels were assessed by western blot in GES-1 cells and sera. ChIP, luciferase reporter assays, mass spectrometry and ELISA were applied to explore the molecular mechanism of H. pylori infection in RA progression. RESULTS The DAS-28 and ACPA levels of patients with RA in the H. pylori-positive group were significantly higher than those in the H. pylori-negative group. Polyclonal ACPA derived from H. pylori-positive patients promoted cell proliferation and induced secretion of IL-6 and IL-8. For the first time, we found that H. pylori infection induces cellular protein citrullination by upregulating protein arginine deiminase type 4 (PAD4). Furthermore, we confirmed a direct functional binding of hypoxia-inducible factor 1α on the PADI4 gene promoter. We demonstrated that PAD4 interacts with and citrullinates keratin 1 (K1), and serum and synovial fluid levels of anti-Cit-K1 antibody were markedly increased in H. pylori-infected patients with RA. CONCLUSION Our findings reveal a novel mechanism by which H. pylori infection contributes to RA progression. Therapeutic interventions targeting H. pylori may be a viable strategy for the management of RA.
Collapse
Affiliation(s)
- Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yilin Deng
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yunqi Zhang
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong, China
| | - Weisan Chen
- Biochemistry and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chang Y, Ou Q, Zhou X, Nie K, Liu J, Zhang S. Global research trends and focus on the link between rheumatoid arthritis and neutrophil extracellular traps: a bibliometric analysis from 1985 to 2023. Front Immunol 2023; 14:1205445. [PMID: 37680637 PMCID: PMC10481536 DOI: 10.3389/fimmu.2023.1205445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that currently has an unknown cause and pathogenesis, and is associated with many complications and a high disability rate. The neutrophil extracellular trap network (NETs) is a newly discovered mechanism that allows neutrophils to capture and kill pathogens. Multiple studies in recent years have highlighted its relevance to the progression of rheumatoid arthritis. Despite the growing number of studies indicating the crucial role of NETs in RA, there has been no bibliometric review of research hotspots and trends in this area. In this study, we retrieved articles related to NETs in RA from the Web of Science Core Collection (WoSCC) database from 1985 to 2023 and used visualization tools such as Citespace, VOSviewer, Tableau Public, and Microsoft Office Excel 2021 to analyze the data. After screening, we included a total of 416 publications involving 2,334 researchers from 1,357 institutions in 167 countries/regions, with relevant articles published in 219 journals. The U.S., China, and Germany are the top 3 countries/regions with 124, 57, and 37 publications respectively. Mariana J. Kaplan is the most published author, and journals such as Frontiers in Immunology and International Journal of Molecular Sciences have had a significant impact on research in this field. The clinical application of PAD enzymes and their inhibitors, and the drug development of NETs as therapeutic targets for RA is a trend for future research. Our study provides a comprehensive bibliometric analysis and summary of NETs in RA publications, which will aid researchers in conducting further scientific research.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
3
|
Yoshida K, Ito H, Kurosaka D, Ikeda R, Noda K, Saito M, Kurosaka D. Autocitrullination confers monocyte chemotactic properties to peptidylarginine deiminase 4. Sci Rep 2023; 13:7528. [PMID: 37160933 PMCID: PMC10169855 DOI: 10.1038/s41598-023-34469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/30/2023] [Indexed: 05/11/2023] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) contributes to the production of citrullinated proteins as autoantigens for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA). PAD4 can also self-deiminate via autocitrullination. However, the role of this process in RA pathogenesis has not been elucidated. This study aimed to clarify PAD4 function before and after autocitrullination and identify citrullinated PAD4 in the synovial fluid of patients with RA. The autocitrullination of recombinant human PAD4 (rhPAD4) was catalyzed in vitro and determined using anti-modified citrulline immunoblotting. Monocyte chemotaxis was evaluated using Boyden chambers, and citrullinated rhPAD4's ability to induce arthritis was assessed in a C57BL/6J mouse model. Citrullinated PAD4 levels were measured in the synovial fluid of patients with RA and osteoarthritis using a novel enzyme-linked immunosorbent assay. Chemotactic findings showed that citrullinated rhPAD4 recruited monocytes in vitro, whereas unmodified rhPAD4 did not. Compared to unmodified rhPAD4, citrullinated rhPAD4 induced greater inflammation in mouse joints through monocyte migration. More citrullinated PAD4 was found in the synovial fluid of patients with RA than in those with osteoarthritis. Citrullinated PAD4 was even detected in ACPA-negative patients with RA. The autocitrullination of PAD4 amplified inflammatory arthritis through monocyte recruitment, suggesting an ACPA-independent role of PAD4 in RA pathogenesis.
Collapse
Affiliation(s)
- Ken Yoshida
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Haruyasu Ito
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kentaro Noda
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
4
|
Bashir M, Mateen W, Khurshid S, Mehmood Malik J, Agha Z, Khan F, Ajmal M, Ali SHB. A common missense variant rs874881 of PADI4 gene and rheumatoid arthritis: Genetic association study and in-silico analysis. Gene 2023; 854:147123. [PMID: 36535460 DOI: 10.1016/j.gene.2022.147123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The peptidylarginine-deiminase 4 (PADI4) is involved in the post-translational catalytic conversion of arginine into citrulline. The autoantibodies including anti-citrullinated protein antibodies (ACPAs) produced in response to hypercitrullinated proteins are a hallmark of rheumatoid arthritis (RA) autoimmunity. Therefore, the role of a missense variant rs874881 (Gly112Ala) of PADI4 in RA susceptibility was analyzed, along with in-silico analysis of structural and functional impacts of this substitution. We did a case-control association study and in-silico analysis. For the case-control study, confirmed RA cases and healthy controls were recruited. Genotyping for rs874881 (n = 750) was performed through polymerase chain reaction-restriction fragment length polymorphism. Multivariate logistic regression analysis was employed to determine association. The in-silico analysis was carried out through HOPE, VarMap, MutationAssessor, MutPred2, SIFT, PolyPhen, CADD, REVEL and MetaLR. In the case-control study, the rs874881 exhibited a strong association with increased RA susceptibility (G vs C odds ratio = 3.85, 95 % confidence interval = 2.81-5.27). Interaction analysis revealed significant interaction of genotype with smoking and gender (p < 0.05). Significant results (p < 0.05) were also obtained in stratified analysis by presence/absence of comorbidities and radiographic damage. According to in-silico pathogenicity prediction analysis, this Gly112Ala substitution does not exert a major effect on protein structure and function including its enzymatic activity. We report a significant association of PADI4 rs874881 with overall RA susceptibility. To our knowledge, this is the first study to do the interaction and stratified analyses on the PADI4 rs874881 in RA. Similar detailed studies should also be performed in other populations.
Collapse
Affiliation(s)
- Mutshaba Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Wajeeha Mateen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Khurshid
- Pakistan Institute of Medical Sciences, Islamabad, Pakistan; Abbottabad International Medical College, Abbottabad, Pakistan
| | | | - Zehra Agha
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Ajmal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Xu M, Du R, Xing W, Chen X, Wan J, Wang S, Xiong L, Nandakumar KS, Holmdahl R, Geng H. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front Immunol 2023; 14:1084283. [PMID: 36761728 PMCID: PMC9902922 DOI: 10.3389/fimmu.2023.1084283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Citrullinated neoepitopes have emerged as key triggers of autoantibodies anti-citrullinated protein antibodies (ACPA) synthesis in rheumatoid arthritis (RA) patients. Apart from their critical role in homeostasis and thrombosis, platelets have a significant contribution to inflammation as well. Although anuclear in nature, platelets have an intricate post-translational modification machinery. Till now, citrullination in platelets and its contribution to trigger autoantibodies ACPA production in RA is an unexplored research direction. Herein, we investigated the expression of peptidylarginine deiminase (PAD) enzymes and citrullinated proteins/peptides in the human platelets and platelet derived microparticles (PDP). Both PAD4 mRNA and protein, but not the other PAD isoforms, are detectable in the human platelets. With a strict filtering criterion,108 citrullination sites present on 76 proteins were identified in the human platelets, and 55 citrullinated modifications present on 37 different proteins were detected in the PDPs. Among them, some are well-known citrullinated autoantigens associated with RA. Citrullinated forms of thrombospondin-1, β-actin, and platelet factor-4 (also known as CXCL4) are highly immunogenic and bound by autoantibodies ACPA. Furthermore, ACPA from RA sera and synovial fluids recognized citrullinated proteins from platelets and significantly activated them as evidenced by P-selectin upregulation and sCD40 L secretion. These results clearly demonstrate the presence of citrullinated autoantigens in platelets and PDPs, thus could serve as potential targets of ACPA in RA.
Collapse
Affiliation(s)
- Minjie Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenping Xing
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueting Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shengqing Wang
- Department of Dermatology, Hospital affiliated to Central China Normal University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
7
|
Matuz-Flores MG, Rosas-Rodríguez JA, Tortoledo-Ortiz O, Muñoz-Barrios S, Martínez-Bonilla GE, Hernández-Bello J, Baños-Hernández CJ, Pacheco-Tena C, Sánchez-Zuno GA, Panduro-Espinoza B, Muñoz-Valle JF. PADI4 Haplotypes Contribute to mRNA Expression, the Enzymatic Activity of Peptidyl Arginine Deaminase and Rheumatoid Arthritis Risk in Patients from Western Mexico. Curr Issues Mol Biol 2022; 44:4268-4281. [PMID: 36135205 PMCID: PMC9498032 DOI: 10.3390/cimb44090293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Citrullination is catalyzed by the peptidyl arginine deiminase 4 (PAD4) enzyme, encoded by the PADI4 gene. Increased PAD4 activity promotes the onset and progression of rheumatoid arthritis (RA). This study aimed to evaluate the association of PADI4 haplotypes with RA risk, mRNA expression, and the PAD4 activity in patients with RA from Mexico. Methodology: 100 RA patients and 100 control subjects (CS) were included. Genotyping was performed by PCR-RFLP method, PADI4 mRNA expression was quantified by real-time PCR, the contribution of PADI4 alleles (PADI4_89 G>A, PADI4_90 T>C, and PADI4_92 G>C) to mRNA expression by the ASTQ method, and PAD4 activity by HPLC. Also, the anti-CCP and anti-PADI4 antibodies were quantified by ELISA. Results: The three PADI4 polymorphisms were associated with RA susceptibility (OR = 1.72, p = 0.005; OR = 1.62; p = 0.014; OR = 1.69; p = 0.009; respectively). The 89G, 90T, and 92G alleles have a higher relative contribution to PADI4 mRNA expression from RA patients than 89A, 90C, and 92C alleles in RA patients. Moreover, the GTG/GTG haplotype was associated with RA susceptibility (OR = 2.86; p = 0.024). The GTG haplotype was associated with higher PADI4 mRNA expression (p = 0.04) and higher PAD4 enzymatic activity (p = 0.007) in RA patients. Conclusions: The evaluated polymorphisms contribute to PADI4 mRNA expression and the enzymatic activity of PAD4 in leukocytes. Therefore, the GTG haplotype is a genetic risk factor for RA in western Mexico, and is associated with increased PADI4 mRNA expression and higher PAD4 activity in these patients.
Collapse
Affiliation(s)
- Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa 85880, Sonora, Mexico
| | - Orlando Tortoledo-Ortiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Coordinación de Nutrición, Lab. de Cromatografía, Hermosillo 83304, Sonora, Mexico
| | - Salvador Muñoz-Barrios
- Unidad Académica de Ciencias Naturales, Universidad Autónoma de Guerrero, Chilpancingo 39086, Guerrero, Mexico
| | | | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Cesar Pacheco-Tena
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua C.P. 31109, Chih., Mexico
| | - Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Beatriz Panduro-Espinoza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence: or
| |
Collapse
|
8
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
9
|
Peptidylarginine Deiminase 2 Gene Polymorphisms in Subjects with Periodontitis Predispose to Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23179536. [PMID: 36076933 PMCID: PMC9455246 DOI: 10.3390/ijms23179536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Epidemiologic studies have shown associations between periodontitis and rheumatoid arthritis (RA), but a causal relationship has not been established. Citrullination of gingival proteins by human peptidylarginine deiminases (PADs) or PAD from Porphyromonas gingivalis has been proposed to generate autoantigens in anti-CCP-positive RA. This study investigated whether the association between periodontitis and RA is influenced by single nucleotide polymorphisms (SNPs) in the genes encoding PAD2 and PAD4 that catalyze aberrant citrullination in RA and often are overexpressed in inflamed gingival connective tissue in subjects with periodontitis. The study included 137 RA patients and 161 controls with self-reported periodontitis. Periodontitis onset preceded RA onset by 13 years on average and was not associated with any of the SNPs investigated. In subjects with periodontitis, carriage of the minor alleles of rs2057094 and rs2235912 in PADI2 significantly increased the risk of RA (odds ratios 1.42 [p = 0.03] and 1.48 [p = 0.02], respectively), and this effect was driven by the anti-CCP-negative RA patients. The minor alleles of these SNPs only increased risk of anti-CCP-positive RA in individuals with periodontitis and a history of smoking. These data suggest that individuals with periodontitis carrying the minor alleles of SNPs rs2057094, rs2076616 and rs2235912 in PADI2 may be at increased risk of RA.
Collapse
|
10
|
Min HK, Kim SH, Lee JY, Lee SH, Kim HR. DJ-1 controls T cell differentiation and osteoclastogenesis in rheumatoid arthritis. Sci Rep 2022; 12:12767. [PMID: 35896699 PMCID: PMC9329329 DOI: 10.1038/s41598-022-16285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we investigated the effect of DJ-1 on helper T cell differentiation, fibroblast-like synoviocyte (FLS) activation, and osteoclastogenesis in rheumatoid arthritis (RA). Serum and synovial fluid (SF) of RA and osteoarthritis (OA) patients were collected, and DJ-1 and H2O2 levels were investigated. CD4+ cells from peripheral blood mononuclear cells (PBMCs) were cultured under type 17 helper T cell (Th17) polarization conditions, and CD4+ T cell differentiation, pro-inflammatory cytokine levels, and soluble receptor activator of nuclear factor kappa-Β ligand (RANKL) were assessed. RA-FLSs were stimulated with 50 μM H2O2, and DJ-1 (10, 50, 100 ng/mL) to evaluate MMP-9, VEGF, TNF-α, and sRANKL production, while RANKL+ FLSs were assessed using flow cytometry. Monocytes were cultured with RANKL or IL-17A with or without DJ-1 and H2O2-pretreated RA-FLS, and tartrate-resistant acid phosphatase (TRAP) staining and RT-qPCR of osteoclast-related genes were performed. The levels of DJ-1 and H2O2 in serum and SF of RA patients were higher than those of OA patients. Under Th17-polarizing conditions, CD4+RANKL+ and CD4+CCR4+CCR6+CXCR3- T cells decreased, whereas CD4+CD25highFoxp3+ T cell increased after DJ-1 administration. Additionally, IL-17A, TNF-α, and sRANKL levels decreased in DJ-1-treated groups. DJ-1 lowered MMP-9, VEGF, TNF-α, and sRANKL levels, and RANKL+ FLS in ROS-stimulated RA-FLS. Both RANKL and IL-17A stimulated osteoclast differentiation, DJ-1 decreased TRAP+ cell count, and the expression levels of TRAP, ATP6v0d2, NFATc1, and CTSK. These findings were also observed in in vitro osteoclastogenesis with DJ-1 pretreated RA-FLS. As DJ-1 regulates Th17/Treg imbalance, pro-inflammatory cytokine production, RA-FLS activation, and osteoclastogenesis, it holds potential for RA therapy.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
11
|
Kim S, Hwang J, Kim J, Lee SH, Cheong YE, Lee S, Kim KH, Cha HS. Metabolic discrimination of synovial fluid between rheumatoid arthritis and osteoarthritis using gas chromatography/time-of-flight mass spectrometry. Metabolomics 2022; 18:48. [PMID: 35781849 DOI: 10.1007/s11306-022-01893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) and osteoarthritis (OA) are clinicopathologically different. OBJECTIVES We aimed to assess the feasibility of metabolomics in differentiating the metabolite profiles of synovial fluid between RA and OA using gas chromatography/time-of-flight mass spectrometry. METHODS We first compared the global metabolomic changes in the synovial fluid of 19 patients with RA and OA. Partial least squares-discriminant, hierarchical clustering, and univariate analyses were performed to distinguish metabolites of RA and OA. These findings were then validated using synovial fluid samples from another set of 15 patients with RA and OA. RESULTS We identified 121 metabolites in the synovial fluid of the first 19 samples. The score plot of PLS-DA showed a clear separation between RA and OA. Twenty-eight crucial metabolites, including hypoxanthine, xanthine, adenosine, citrulline, histidine, and tryptophan, were identified to be capable of distinguishing RA metabolism from that of OA; these were found to be associated with purine and amino acid metabolism. CONCLUSION Our results demonstrated that metabolite profiling of synovial fluid could clearly discriminate between RA and OA, suggesting that metabolomics may be a feasible tool to assist in the diagnosis and advance the comprehension of pathological processes for diseases.
Collapse
Affiliation(s)
- Sooah Kim
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Jiwon Hwang
- Division of Rheumatology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, 51353, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Eun Cheong
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Seulkee Lee
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Hoon-Suk Cha
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
12
|
Cheng Y, Si Y, Wang L, Ding M, Yu S, Lu L, Guo Y, Zong M, Fan L. The regulation of macrophage polarization by hypoxia-PADI4 coordination in Rheumatoid arthritis. Int Immunopharmacol 2021; 99:107988. [PMID: 34333356 DOI: 10.1016/j.intimp.2021.107988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypoxia, a common feature of rheumatoid arthritis (RA), induces the over-expression of peptidyl arginine deiminase 4 (PADI4) in fibroblast-like synoviocytes (FLSs) and macrophages. However, the roles of PADI4 and its inducer hypoxia in the regulation of macrophage polarization remain unclear. This study aimed to investigate the role of hypoxia-PADI4 for macrophage polarization in RA patients. METHODS Synovial tissue (ST) and synovial fluid (SF) were collected from 3 OA patients and 6 RA patients. The distribution of M1 and M2 in ST and cytokines in SF were examined by immunohistochemical analysis and Bio-Plex immunoassays. THP-1 macrophages and BMDM polarization were determined under normoxic (21% oxygen) or hypoxic (3% oxygen) conditions. The effects of PADI4 on macrophages were determined by transfection of adenovirus vector-coated PADI4 (AdPADI4) and the use of PADI4 inhibitor. Finally, the roles of PADI4 in joint synovial lesions on macrophage polarization were investigated in collagen-induced arthritis (CIA) rats. RESULTS We found increased macrophage polarization of M1 and M2 in the RA ST, compared with OA ST. The ratio of M1/M2 for RA and OA was 1.633 ± 0.1443 and 2.544 ± 0.4429, respectively. The concentration of M1- and M2-type cytokines was higher in RA than that in OA patients. Hypoxia contributed to the increase of the gene and protein expression of M1 and M2 markers. M1- but not M2-type gene expression showed a positive relationship with PADI4 expressionwhile the level of expression of M2-type genes showed no significant difference. The degree of joint swelling and destruction was effectively alleviated, and the number of macrophages especially M1 decreased in CIA rats after down-regulating PADI4 expression. CONCLUSION Hypoxia is responsible for the co-polarization of M1 and M2. Hypoxia-associated PADI4 is responsible for M1 macrophage activation, implying that the inflammatory environment can be eased by decreasing PADI4 expression and improving the hypoxic environment.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Yuying Si
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Lan Wang
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Menglei Ding
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Yide Guo
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China.
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China.
| |
Collapse
|
13
|
Some Common SNPs of the T-Cell Homeostasis-Related Genes Are Associated with Multiple Sclerosis, but Not with the Clinical Manifestations of the Disease, in the Polish Population. J Immunol Res 2020; 2020:8838014. [PMID: 33224992 PMCID: PMC7673932 DOI: 10.1155/2020/8838014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Multiple sclerosis (MS) is an autoimmune disease, and genetic factors play an important role in its pathogenesis and progression. The aim of our study was to evaluate the frequencies of alleles and genetic variants of the T-cell homeostasis-related genes, in subjects with MS, as well as to investigate the association with MS clinical manifestations and disability. Methods 94 subjects with MS and 160 healthy individuals have been genotyped for seven common single-nucleotide variants in IL-2RA, CTLA4, CD40, and PADI4 genes. The ages of onset, duration of the disease, and clinical condition of the MS subjects were analysed. We used the Chi2 test confirmed with Fisher's exact test for statistical analysis. Results The frequency of allele T and CT/TT genotypes (rs7093069) in the IL2RA gene, as well as the T allele and CT/TT genotypes in rs12722598, were significantly higher in the control group. The significant differences between studied groups we also found for the G allele and GG/GA genotypes of rs3087243 in CTLA4 gene, which were more common among the control group. The heterozygous genotype TC (rs1883832) of CD40 gene was more common in the control subjects, and the frequency of the alleles and genotypes in the rs1748033 of the PADI4 gene did not differ between the studied groups. Between the studied genotypes, we did not observe any significant differences in the age of onset and duration of disease, including sex stratification. Conclusion Our results highlight the protective role of some of the T-cell homeostasis-related genetic variants in MS development, but not in its clinical manifestation.
Collapse
|
14
|
Li J, Tang RS, Shi Z, Li JQ. Nuclear factor‐κB in rheumatoid arthritis. Int J Rheum Dis 2020; 23:1627-1635. [PMID: 32965792 DOI: 10.1111/1756-185x.13958] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Jie Li
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Rong-Shuang Tang
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhou Shi
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jin-Qi Li
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province & Sichuan Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
15
|
Li M, Wang L, Shi DC, Foo JN, Zhong Z, Khor CC, Lanzani C, Citterio L, Salvi E, Yin PR, Bei JX, Wang L, Liao YH, Chen J, Chen QK, Xu G, Jiang GR, Wan JX, Chen MH, Chen N, Zhang H, Zeng YX, Liu ZH, Liu JJ, Yu XQ. Genome-Wide Meta-Analysis Identifies Three Novel Susceptibility Loci and Reveals Ethnic Heterogeneity of Genetic Susceptibility for IgA Nephropathy. J Am Soc Nephrol 2020; 31:2949-2963. [PMID: 32912934 DOI: 10.1681/asn.2019080799] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Eighteen known susceptibility loci for IgAN account for only a small proportion of IgAN risk. METHODS Genome-wide meta-analysis was performed in 2628 patients and 11,563 controls of Chinese ancestry, and a replication analysis was conducted in 6879 patients and 9019 controls of Chinese descent and 1039 patients and 1289 controls of European ancestry. The data were used to assess the association of susceptibility loci with clinical phenotypes for IgAN, and to investigate genetic heterogeneity of IgAN susceptibility between the two populations. Imputation-based analysis of the MHC/HLA region extended the scrutiny. RESULTS Identification of three novel loci (rs6427389 on 1q23.1 [P=8.18×10-9, OR=1.132], rs6942325 on 6p25.3 [P=1.62×10-11, OR=1.165], and rs2240335 on 1p36.13 [P=5.10×10-9, OR=1.114]), implicates FCRL3, DUSP22.IRF4, and PADI4 as susceptibility genes for IgAN. Rs2240335 is associated with the expression level of PADI4, and rs6427389 is in high linkage disequilibrium with rs11264799, which showed a strong expression quantitative trail loci effect on FCRL3. Of the 24 confirmed risk SNPs, six showed significant heterogeneity of genetic effects and DEFA showed clear evidence of allelic heterogeneity between the populations. Imputation-based analysis of the MHC region revealed significant associations at three HLA polymorphisms (HLA allele DPB1*02, AA_DRB1_140_32657458_T, and AA_DQA1_34_32717152) and two SNPs (rs9275464 and rs2295119). CONCLUSIONS A meta-analysis of GWAS data revealed three novel genetic risk loci for IgAN, and three HLA polymorphisms and two SNPs within the MHC region, and demonstrated the genetic heterogeneity of seven loci out of 24 confirmed risk SNPs. These variants may explain susceptibility differences between Chinese and European populations.
Collapse
Affiliation(s)
- Ming Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China .,National Health Commission Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ling Wang
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dian-Chun Shi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jia-Nee Foo
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Chiea-Chuen Khor
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Erika Salvi
- Neurology Unit, IRCCS Neurology Institute "Carlo Besta," Milan, Italy
| | - Pei-Ran Yin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yun-Hua Liao
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jian Chen
- Department of Nephrology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, China
| | - Qin-Kai Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Geng-Ru Jiang
- Department of Nephrology, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Xin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meng-Hua Chen
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Nan Chen
- Department of Nephrology, RuiJin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Beijing, China
| | - Yi-Xin Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jian-Jun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,Guangdong Provincial People's Hospital, Guangzhou, China.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China .,National Health Commission Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Wang J, Tie N, Li H, Kang X. Inhibitory Effect of Tetramerized Single-Chain Variable Fragment of Anti-Cyclic Citrullinated Peptide Antibodies on the Proliferation, Activation, and Secretion of Cytokines of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis In Vitro Co-Culture System. Inflammation 2020; 43:2245-2255. [PMID: 32737657 DOI: 10.1007/s10753-020-01292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tetramerized single-chain variable fragment (ScFv) of anti-cyclic citrullinated peptide (TeAb-CCP) is a constructed tetramerized ScFv of anti-cyclic citrullinated peptide (CCP) antibodies with p53 tetrameric domain, aim to investigate its effect on fibroblast-like synoviocytes (FLSs) proliferation, migration, invasion, and production of inflammatory mediators in the in vitro co-culture system of peripheral mononuclear cells (PBMCs) and FLSs. TeAb-CCP was constructed by modifying a monovalent ScFv antibody to CCP with p53 tetrameric domain to improve its affinity. FLSs were isolated and cultured from rheumatoid arthritis (RA) patients and control subjects. A co-culture system of peripheral mononuclear cells (PBMCs) and FLSs was used. FLSs proliferation, migration, and invasion were measured by MTT, scratch test, and Transwell chamber. Supernatants were measured for cytokines, chemokines, metalloproteinases, and anti-CCP antibodies by Luminex liquid phase protein chip and ELISA. TeAb-CCP significantly inhibited FLSs proliferation in a dose-dependent mode, with maximal action at concentration of 100 μg/ml on the 7th day in the co-culture system with PBMCs and FLSs, but not the same with only FLSs. TeAb-CCP significantly suppressed FLSs migration and invasive ability compared with the controls. Significantly lower levels of interleukin (IL)-6, IL-8, RANKL, protein arginine deiminase (PAD)-2, PAD4, metalloproteinase (MMP)-1 and MMP-3 and anti-CCP antibodies were found in co-culture supernatant of TeAb-CCP group. In contrast, transforming growth factor-β (TGF-β) and tissue inhibitor of metalloproteinases-2 (TIMP-2) was significantly increased in the TeAb-CCP group. No significant difference of IL-1a, IL-10, IL-17, TNFα, VEGF, and FGF was found between two groups. As a blocking antibody, TeAb-CCP can significantly inhibit PBMCs of RA to produce pro-inflammatory mediators, and furthermore, inhibit the proliferation, activation, migration, and invasion of FLSs in vitro. In turn, it is suggested that citrullinated modified self-epitopes may be a new target for RA therapy.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
18
|
Wu EK, Ambrosini RD, Kottmann RM, Ritchlin CT, Schwarz EM, Rahimi H. Reinterpreting Evidence of Rheumatoid Arthritis-Associated Interstitial Lung Disease to Understand Etiology. Curr Rheumatol Rev 2020; 15:277-289. [PMID: 30652645 DOI: 10.2174/1573397115666190116102451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/19/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Abstract
Interstitial Lung Disease (ILD) is a well-known complication of rheumatoid arthritis (RA) which often results in significant morbidity and mortality. It is often diagnosed late in the disease process via descriptive criteria. Multiple subtypes of RA-ILD exist as defined by chest CT and histopathology. In the absence of formal natural history studies and definitive diagnostics, a conventional dogma has emerged that there are two major subtypes of RA-ILD (nonspecific interstitial pneumonia (NSIP) and Usual Interstitial Pneumonia (UIP)). These subtypes are based on clinical experience and correlation studies. However, recent animal model data are incongruous with established paradigms of RA-ILD and beg reassessment of the clinical evidence in order to better understand etiology, pathogenesis, prognosis, and response to therapy. To this end, here we: 1) review the literature on epidemiology, radiology, histopathology and clinical outcomes of the various RAILD subtypes, existing animal models, and current theories on RA-ILD pathogenesis; 2) highlight the major gaps in our knowledge; and 3) propose future research to test an emerging theory of RAILD that posits initial rheumatic lung inflammation in the form of NSIP-like pathology transforms mesenchymal cells to derive chimeric disease, and subsequently develops into frank UIP-like fibrosis in some RA patients. Elucidation of the pathogenesis of RA-ILD is critical for the development of effective interventions for RA-ILD.
Collapse
Affiliation(s)
- Emily K Wu
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Microbiology & Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Robert D Ambrosini
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - R Matthew Kottmann
- Division of Pulmonary Diseases and Critical Care, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Christopher T Ritchlin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Division of Allergy, Immunology, Rheumatology, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Edward M Schwarz
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Microbiology & Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Homaira Rahimi
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.,Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
19
|
Fert-Bober J, Darrah E, Andrade F. Insights into the study and origin of the citrullinome in rheumatoid arthritis. Immunol Rev 2019; 294:133-147. [PMID: 31876028 DOI: 10.1111/imr.12834] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of autoantibodies and autoreactive T cells to citrullinated proteins and citrullinating enzymes in patients with rheumatoid arthritis (RA), together with the accumulation of citrullinated proteins in rheumatoid joints, provides substantial evidence that dysregulated citrullination is a hallmark feature of RA. However, understanding mechanisms that dysregulate citrullination in RA has important challenges. Citrullination is a normal process in immune and non-immune cells, which is likely activated by different conditions (eg, inflammation) with no pathogenic consequences. In a complex inflammatory environment such as the RA joint, unique strategies are therefore required to dissect specific mechanisms involved in the abnormal production of citrullinated proteins. Here, we will review current models of citrullination in RA and discuss critical components that, in our view, are relevant to understanding the accumulation of citrullinated proteins in the RA joint, collectively referred to as the RA citrullinome. In particular, we will focus on potential caveats in the study of citrullination in RA and will highlight methods to precisely detect citrullinated proteins in complex biological samples, which is a confirmatory approach to mechanistically link the RA citrullinome with unique pathogenic pathways in RA.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
El Shikh MEM, El Sayed R, Nerviani A, Goldmann K, John CR, Hands R, Fossati-Jimack L, Lewis MJ, Pitzalis C. Extracellular traps and PAD4 released by macrophages induce citrullination and auto-antibody production in autoimmune arthritis. J Autoimmun 2019; 105:102297. [PMID: 31277965 DOI: 10.1016/j.jaut.2019.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
The mechanisms underlying the transition of rheumatoid arthritis (RA) systemic autoimmunity to the joints remain largely unknown. Here, we demonstrate that macrophages in the secondary lymphoid organs (SLOs) and synovial ectopic lymphoid-like structures (ELSs) express peptidylarginine deiminase 4 (PAD4) in murine collagen induced arthritis (CIA) and synovial biopsies from RA patients. Moreover, peptidyl citrulline colocalized with macrophages in SLOs and ELSs, and depletion of macrophages in CIA decreased lymphoid tissue citrullination and serum anti-citrullinated protein/peptide antibody (ACPA) levels. Furthermore, PAD was released from activated murine and RA synovial tissue and fluid (SF) macrophages which functionally deiminated extracellular proteins/peptides in vitro. Additionally, activated murine and SF macrophages displayed macrophage extracellular trap formation (METosis) and release of intracellular citrullinated histones. Moreover, presentation of citrullinated proteins induced ACPA production in vitro. Thus, lymphoid tissue macrophages contribute to self-antigen citrullination and ACPA production, indicating that their selective targeting would potentially ameliorate citrullination-dependent autoimmune disorders.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Riham El Sayed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher Robert John
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
21
|
An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019:7592851. [PMID: 31886309 PMCID: PMC6899306 DOI: 10.1155/2019/7592851] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
Collapse
|
22
|
Citrullination of fibrinogen by peptidylarginine deiminase 2 impairs fibrin clot structure. Clin Chim Acta 2019; 501:6-11. [PMID: 31730822 DOI: 10.1016/j.cca.2019.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Citrullination is the post-translational conversion of arginine into citrulline in proteins. The reaction is catalyzed by peptidylarginine deiminase (PAD), of which five isoforms exist. Fibrinogen is a substrate for PAD2 and PAD4, and citrullinated fibrinogen (cFBG) has been detected in patients with inflammatory diseases. In purified systems, cFBG is known to inhibit the release of fibrinopeptide A (FPA) and B (FPB) and impairs fibrin polymerization. However, the effect of cFBG on fibrin structure and fibrinolysis in a plasma environment remains unclear. We hypothesized that citrullination of fibrinogen impairs fibrin properties. METHODS Fibrinogen was citrullinated by recombinant PAD2 and PAD4. The impact of cFBG on fibrin structure was investigated by turbidity measurements in fibrinogen-deficient plasma spiked with cFBG or native fibrinogen. RESULTS Citrullination of fibrinogen by PAD2 dose-dependently reduced the rate of fibrin polymerization, as well as the overall hemostasis potential of fibrin, the maximum velocity of fibrin formation, the fibrin mass/length ratio, and the lysis of fibrin clots. CONCLUSION Citrullination of fibrinogen by PAD2 affects not only fibrin polymerization but also fibrin fiber properties, indicating that the fibrin network formed in the presence of cFBG may influence hemostasis. Our results suggest that citrullination of fibrinogen alters the composition of fibrin fibers which may lead to a looser fibrin network that is more susceptible to fibrinolysis and thereby affecting the hemostatic balance.
Collapse
|
23
|
Orsolini G, Fassio A, Rossini M, Adami G, Giollo A, Caimmi C, Idolazzi L, Viapiana O, Gatti D. Effects of biological and targeted synthetic DMARDs on bone loss in rheumatoid arthritis. Pharmacol Res 2019; 147:104354. [DOI: 10.1016/j.phrs.2019.104354] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
|
24
|
Yadav R, Yoo DG, Kahlenberg JM, Bridges SL, Oni O, Huang H, Stecenko A, Rada B. Systemic levels of anti-PAD4 autoantibodies correlate with airway obstruction in cystic fibrosis. J Cyst Fibros 2019; 18:636-645. [PMID: 30638826 PMCID: PMC6620172 DOI: 10.1016/j.jcf.2018.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) airway disease is characterized by the long-term presence of neutrophil granulocytes. Formation of neutrophil extracellular traps (NETs) and/or autoantibodies directed against extracellular components of NETs are possible contributors to neutrophil-mediated lung damage in CF. The goal of this study was to measure their levels in CF adults compared to healthy controls and subjects with rheumatologic diseases known to develop NET-related autoantibodies and pathologies, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Sera were analyzed from the following number of subjects: 37 CF, 23 healthy controls (HC), 20 RA, and 21 SLE. CF had elevated serum myeloperoxidase (MPO) concentrations (347.5±56.1 ng/ml, mean+/-S.E.M., p = .0132) compared to HC (144.5±14.6 ng/ml) but not of neutrophil elastase (NE) complexed with alpha-1-antitrypsin, cell-free DNA or NE-DNA complexes. The peptidylarginine deiminase 4 (PAD4) enzyme is required for NET formation and associated DNA release in neutrophils. Serum levels of anti-PAD4 antibodies (Ab) were elevated in CF (p = .0147) compared to HC and showed an inverse correlation with a measure of lung function, FEV1% predicted (r = -0.5020, p = .015), as did MPO levels (r = -0.4801, p = .0026). Anti-PAD4 Ab levels in CF sera associated with lung infection by P. aeruginosa, but not that by S. aureus, age, sex, CF-related diabetes or the presence of musculoskeletal pain. Serum levels of anti-citrullinated protein Abs (ACPAs) and anti-nucleosome Abs were not elevated in CF compared to HC (p = .7498, p = .0678). In summary, adult CF subjects develop an autoimmune response against NET components that correlates with worsening lung disease.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Dae-Goon Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - S Louis Bridges
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Oluwadamilola Oni
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, USA
| | - Arlene Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
25
|
Gómez-Bañuelos E, Mukherjee A, Darrah E, Andrade F. Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J Clin Med 2019; 8:jcm8091309. [PMID: 31454946 PMCID: PMC6780899 DOI: 10.3390/jcm8091309] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology characterized by immune-mediated damage of synovial joints and antibodies to citrullinated antigens. Periodontal disease, a bacterial-induced inflammatory disease of the periodontium, is commonly observed in RA and has implicated periodontal pathogens as potential triggers of the disease. In particular, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have gained interest as microbial candidates involved in RA pathogenesis by inducing the production of citrullinated antigens. Here, we will discuss the clinical and mechanistic evidence surrounding the role of these periodontal bacteria in RA pathogenesis, which highlights a key area for the treatment and preventive interventions in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Amarshi Mukherjee
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
26
|
Discovery of Novel Potential Reversible Peptidyl Arginine Deiminase Inhibitor. Int J Mol Sci 2019; 20:ijms20092174. [PMID: 31052493 PMCID: PMC6539144 DOI: 10.3390/ijms20092174] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022] Open
Abstract
Citrullination, a posttranslational modification, is catalyzed by peptidylarginine deiminases (PADs), a unique family of enzymes that converts peptidyl-arginine to peptidyl-citrulline. Overexpression and/or increased PAD activity is observed in rheumatoid arthritis (RA), Alzheimer’s disease, multiple sclerosis, and cancer. Moreover, bacterial PADs, such as Porphyromonas gingivalis PAD (PPAD), may have a role in the pathogenesis of RA, indicating PADs as promising therapeutic targets. Herein, six novel compounds were examined as potential inhibitors of human PAD4 and PPAD, and compared to an irreversible PAD inhibitor, Cl-amidine. Four of the tested compounds (compounds 2, 3, 4, and 6) exhibited a micromolar-range inhibition potency against PAD4 and no effect against PPAD in the in vitro assays. Compound 4 was able to inhibit the PAD4-induced citrullination of H3 histone with higher efficiency than Cl-amidine. In conclusion, compound 4 was highly effective and presents a promising direction in the search for novel RA treatment strategies.
Collapse
|
27
|
Peptidyl-arginine deiminase-type IV as a diagnostic and prognostic marker in rheumatoid arthritis patients. EGYPTIAN RHEUMATOLOGIST 2019. [DOI: 10.1016/j.ejr.2018.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Lee JY, Kang MJ, Choi JY, Park JS, Park JK, Lee EY, Lee EB, Pap T, Yi EC, Song YW. Apolipoprotein B binds to enolase-1 and aggravates inflammation in rheumatoid arthritis. Ann Rheum Dis 2018; 77:1480-1489. [PMID: 29997113 DOI: 10.1136/annrheumdis-2018-213444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Immune cells from patients with rheumatoid arthritis (RA) express more enolase-1 (ENO1) on their surface than those from healthy subjects, and they elicit an enhanced inflammatory response. This study is aimed to identify the ligands of ENO1 that could promote inflammatory loops in vitro and enhance the arthritis severity in vivo. METHODS ENO1-binding proteins in RA synovial fluid were identified by mass spectromety, and affinity to ENO1 was evaluated by means of a ligand blotting and binding assay, surface plasmon resonance and confocal microscopy. Proinflammatory response by the interaction between ENO1 and apolipoprotein B (apoB) was tested in vitro and in vivo using peripheral blood mononuclear cells and a K/BxN serum transfer arthritis model and low-density lipoproteins receptor (LDLR) knockout mice. RESULTS ApoB in the synovid fluid of patients with RA was identified as a specific ligand to ENO1 with a higher affinity than plasminogen, a known ENO1 ligand. ApoB binding to ENO1 on monocytes elicited the production of tumour necrosis factor-α, interleukins (IL)-1β and IL-6 through both p38 mitogen-activated protein kinase and NF-κB pathways. In the K/BxN serum transfer arthritis model, administration of apoB increased the production of proinflammatory cytokines and exaggerated arthritis severity. The severity of K/BxN serum transfer arthritis in LDLR knockout mice was comparable with wild-type mice. CONCLUSIONS A key component of atherogenic lipids, apoB, aggravated arthritis by potentiating the inflammatory response via its interaction with ENO1 expressed on the surface of immune cells. This suggests a novel mechanism by which lipid metabolism regulates chronic inflammation in RA.
Collapse
Affiliation(s)
- Joo Youn Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Choi
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Ji Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Jin Kyun Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yeong Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Liu Y, Carmona-Rivera C, Moore E, Seto NL, Knight JS, Pryor M, Yang ZH, Hemmers S, Remaley AT, Mowen KA, Kaplan MJ. Myeloid-Specific Deletion of Peptidylarginine Deiminase 4 Mitigates Atherosclerosis. Front Immunol 2018; 9:1680. [PMID: 30140264 PMCID: PMC6094966 DOI: 10.3389/fimmu.2018.01680] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that neutrophil extracellular traps (NETs) may play a role in promoting atherosclerotic plaque lesions in humans and in murine models. The exact pathways involved in NET-driven atherogenesis remain to be systematically characterized. To assess the extent to which myeloid-specific peptidylarginine deiminase 4 (PAD4) and PAD4-dependent NET formation contribute to atherosclerosis, mice with myeloid-specific deletion of PAD4 were generated and backcrossed to Apoe-/- mice. The kinetics of atherosclerosis development were determined. NETs, but not macrophage extracellular traps, were present in atherosclerotic lesions as early as 3 weeks after initiating high-fat chow. The presence of NETs was associated with the development of atherosclerosis and with inflammatory responses in the aorta. Specific deletion of PAD4 in the myeloid lineage significantly reduced atherosclerosis burden in association with diminished NET formation and reduced inflammatory responses in the aorta. NETs stimulated macrophages to synthesize inflammatory mediators, including IL-1β, CCL2, CXCL1, and CXCL2. Our data support the notion that NETs promote atherosclerosis and that the use of specific PAD4 inhibitors may have therapeutic benefits in this potentially devastating condition.
Collapse
Affiliation(s)
- Yudong Liu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Erica Moore
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nickie L Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Milton Pryor
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Saskia Hemmers
- The Scripps Research Institute, La Jolla, CA, United States
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Kerri A Mowen
- The Scripps Research Institute, La Jolla, CA, United States
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
30
|
Sun D, Chen J, Liu L, Zhao G, Dong P, Wu B, Wang J, Dong L. Establishment of a 12-gene expression signature to predict colon cancer prognosis. PeerJ 2018; 6:e4942. [PMID: 29915691 PMCID: PMC6004299 DOI: 10.7717/peerj.4942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
A robust and accurate gene expression signature is essential to assist oncologists to determine which subset of patients at similar Tumor-Lymph Node-Metastasis (TNM) stage has high recurrence risk and could benefit from adjuvant therapies. Here we applied a two-step supervised machine-learning method and established a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD) prognosis by using COAD RNA-seq transcriptome data from The Cancer Genome Atlas (TCGA). The predictive performance of the 12-gene signature was validated with two independent gene expression microarray datasets: GSE39582 includes 566 COAD cases for the development of six molecular subtypes with distinct clinical, molecular and survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients for the generation of a metastasis gene expression profile to predict recurrence and death in COAD patients. The signature could effectively separate the poor prognosis patients from good prognosis group (disease specific survival (DSS): Kaplan Meier (KM) Log Rank p = 0.0034; overall survival (OS): KM Log Rank p = 0.0336) in GSE17538. For patients with proficient mismatch repair system (pMMR) in GSE39582, the signature could also effectively distinguish high risk group from low risk group (OS: KM Log Rank p = 0.005; Relapse free survival (RFS): KM Log Rank p = 0.022). Interestingly, advanced stage patients were significantly enriched in high 12-gene score group (Fisher’s exact test p = 0.0003). After stage stratification, the signature could still distinguish poor prognosis patients in GSE17538 from good prognosis within stage II (Log Rank p = 0.01) and stage II & III (Log Rank p = 0.017) in the outcome of DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies (ACT) and patients with higher 12-gene score showed poorer prognosis (III, OS: KM Log Rank p = 0.046; III & II, OS: KM Log Rank p = 0.041). Among stage II/III pMMR patients with lower 12-gene scores in GSE39582, the subgroup receiving ACT showed significantly longer OS time compared with those who received no ACT (Log Rank p = 0.021), while there is no obvious difference between counterparts among patients with higher 12-gene scores (Log Rank p = 0.12). Besides COAD, our 12-gene signature is multifunctional in several other cancer types including kidney cancer, lung cancer, uveal and skin melanoma, brain cancer, and pancreatic cancer. Functional classification showed that seven of the twelve genes are involved in immune system function and regulation, so our 12-gene signature could potentially be used to guide decisions about adjuvant therapy for patients with stage II/III and pMMR COAD.
Collapse
Affiliation(s)
- Dalong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Longzi Liu
- Department of Hepatic Surgery, Liver Cancer Institute, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxi Zhao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pingping Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingrui Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Guderud K, Mæhlen MT, Nordang GBN, Viken MK, Andreassen BK, Molberg Ø, Flåm ST, Lie BA. Lack of Association among Peptidyl Arginine Deiminase Type 4 Autoantibodies, PADI4 Polymorphisms, and Clinical Characteristics in Rheumatoid Arthritis. J Rheumatol 2018; 45:1211-1219. [PMID: 29858238 DOI: 10.3899/jrheum.170769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We aimed to jointly investigate the role of antipeptidyl arginine deiminase type 4 antibodies (anti-PAD4) and polymorphisms in the PADI4 gene together with clinical variables in rheumatoid arthritis (RA). METHODS Serum IgG autoantibodies to human recombinant PAD4 were identified by DELFIA technique in 745 patients with RA (366 available from previous studies). Genotyping of PADI4 was performed using TaqMan assays in 945 patients and 1118 controls. Clinical data, anticitrullinated protein antibodies (ACPA) status, shared epitope status, and a combined genetic risk score were also available. RESULTS Anti-PAD4 antibodies were detected in 193 (26%) of 745 patients with RA; 149 (77%) of these were also ACPA-positive. No association was observed between anti-PAD4 status and clinical characteristics, PADI4 polymorphisms, or genetic risk scores after stratification for ACPA status. CONCLUSION Taken together, the results from these combined serological, genetic, and clinical analyses suggest that anti-PAD4 appears to be a bystander autoantibody with no current clinical utility in RA.
Collapse
Affiliation(s)
- Kari Guderud
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Marthe Thoresen Mæhlen
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Gry Beate Namløs Nordang
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Marte Kathrine Viken
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Bettina Kulle Andreassen
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Øyvind Molberg
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Siri Tennebø Flåm
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway.,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre
| | - Benedicte Alexandra Lie
- From the Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital; K.G. Jebsen Inflammation Research Centre, University of Oslo; Department of Rheumatology, Oslo University Hospital; Department of Rheumatology, Diakonhjemmet Hospital; Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway. .,K. Guderud, M Pharm, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; M.T. Mæhlen, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital, and Department of Rheumatology, Diakonhjemmet Hospital; G.B. Nordang, PhD, Department of Medical Genetics, University of Oslo and Oslo University Hospital; M.K. Viken, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre; B.K. Andreassen, PhD, Department of Research, Cancer Registry of Norway, Institute for Population-Based Research; Ø. Molberg, PhD, Department of Rheumatology, Oslo University Hospital; S.T. Flåm, BS, Department of Medical Genetics, and the K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital; B.A. Lie, PhD, Department of Medical Genetics, and Department of Immunology, University of Oslo and Oslo University Hospital, and K.G. Jebsen Inflammation Research Centre.
| |
Collapse
|
32
|
Zhou Y, Mittereder N, Sims GP. Perspective on Protein Arginine Deiminase Activity-Bicarbonate Is a pH-Independent Regulator of Citrullination. Front Immunol 2018; 9:34. [PMID: 29403504 PMCID: PMC5778117 DOI: 10.3389/fimmu.2018.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
Protein citrullination catalyzed by peptidyl arginine deiminase (PADs) is involved in autoimmune disease pathogenesis, especially in rheumatoid arthritis. Calcium is a key regulator of PAD activity, but under normal physiological conditions it remains uncertain how intracellular calcium levels can be raised to sufficiently high levels to activate these enzymes. In pursuit of trying to identify other factors that influence PAD activity, we identified bicarbonate as a potential regulator of PAD activity. We demonstrate that physiological levels of bicarbonate upregulate citrullination by recombinant PAD2/4 and endogenous PADs in neutrophils. The impact of bicarbonate is independent of calcium and pH. Adding bicarbonate to commercial PAD activity kits could increase assay performance and biological relevance. These results suggest that citrullination activity is regulated by multiple factors including calcium and bicarbonate. We also provide commentary on the current understanding of PAD regulation and future perspective of research in this area.
Collapse
Affiliation(s)
- Yebin Zhou
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Nanette Mittereder
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| |
Collapse
|
33
|
Induction of protein citrullination and auto-antibodies production in murine exposed to nickel nanomaterials. Sci Rep 2018; 8:679. [PMID: 29330439 PMCID: PMC5766588 DOI: 10.1038/s41598-017-19068-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
Citrullination, or the post-translational deimination of polypeptide-bound arginine, is involved in several pathological processes in the body, including autoimmunity and tumorigenesis. Recent studies have shown that nanomaterials can trigger protein citrullination, which might constitute a common pathogenic link to disease development. Here we demonstrated auto-antibody production in serum of nanomaterials-treated mice. Citrullination-associated phenomena and PAD levels were found to be elevated in nanomaterials -treated cell lines as well as in the spleen, kidneys and lymph nodes of mice, suggesting a systemic response to nanomaterials injection, and validated in human pleural and pericardial malignant mesothelioma (MM) samples. The observed systemic responses in mice exposed to nanomaterials support the evidence linking exposure to environmental factors with the development of autoimmunity responses and reinforces the need for comprehensive safety screening of nanomaterials. Furthermore, these nanomaterials induce pathological processes that mimic those observed in Pleural MM, and therefore require further investigations into their carcinogenicity.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Dysregulated citrullination is a key element that drives the production and maintenance of antibodies to citrullinated proteins, a hallmark in rheumatoid arthritis (RA). This article reviews recent literature on the origin of citrullinated antigens in RA. RECENT FINDINGS The study of synovial fluid from patients with RA has provided important insights into the identity of citrullinated proteins that accumulate in the RA joint (the RA citrullinome) and mechanisms that control their generation. SUMMARY Citrullinating enzymes (peptidylarginine deiminases, PADs) are tightly controlled to limit their hyperactivation. Calcium and redox conditions are important regulators of PAD activity. Studies suggest that citrullination is dysregulated both intra- and extracellularly in RA. In neutrophils, host (i.e., perforin and the membrane attack complex) and bacterial (i.e., toxins) pore-forming proteins induce prominent calcium influx, cytolysis, and hyperactivation of PADs. These factors likely drive hypercitrullination in the RA joint and at extraarticular sites of disease initiation, respectively. As oxidizing conditions present in the extracellular environment are known to inactivate PADs, extracellular citrullination in RA probably requires the constant release of active enzymes from dying cells and may be accelerated by autoantibodies that activate PADs.
Collapse
Affiliation(s)
- Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Aratani S, Fujita H, Yagishita N, Yamano Y, Okubo Y, Nishioka K, Nakajima T. Inhibitory effects of ubiquitination of synoviolin by PADI4. Mol Med Rep 2017; 16:9203-9209. [DOI: 10.3892/mmr.2017.7764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
36
|
Zhou Y, Chen B, Mittereder N, Chaerkady R, Strain M, An LL, Rahman S, Ma W, Low CP, Chan D, Neal F, Bingham CO, Sampson K, Darrah E, Siegel RM, Hasni S, Andrade F, Vousden KA, Mustelin T, Sims GP. Spontaneous Secretion of the Citrullination Enzyme PAD2 and Cell Surface Exposure of PAD4 by Neutrophils. Front Immunol 2017; 8:1200. [PMID: 28993780 PMCID: PMC5622307 DOI: 10.3389/fimmu.2017.01200] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023] Open
Abstract
Autoantibodies directed against citrullinated epitopes of proteins are highly diagnostic of rheumatoid arthritis (RA), and elevated levels of protein citrullination can be found in the joints of patients with RA. Calcium-dependent peptidyl-arginine deiminases (PAD) are the enzymes responsible for citrullination. PAD2 and PAD4 are enriched in neutrophils and likely drive citrullination under inflammatory conditions. PADs may be released during NETosis or cell death, but the mechanisms responsible for PAD activity under physiological conditions have not been fully elucidated. To understand how PADs citrullinate extracellular proteins, we investigated the cellular localization and activity of PAD2 and PAD4, and we report that viable neutrophils from healthy donors have active PAD4 exposed on their surface and spontaneously secrete PAD2. Neutrophil activation by some stimulatory agents increased the levels of immunoreactive PAD4 on the cell surface, and some stimuli reduced PAD2 secretion. Our data indicate that live neutrophils have the inherent capacity to express active extracellular PADs. These novel pathways are distinguished from intracellular PAD activation during NETosis and calcium influx-mediated hypercitrullination. Our study implies that extracellular PADs may have a physiological role under non-pathogenic conditions as well as a pathological role in RA.
Collapse
Affiliation(s)
- Yebin Zhou
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Bo Chen
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Nanette Mittereder
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Raghothama Chaerkady
- Antibody Discovery and Protein Engineering, MedImmune LLC., Gaithersburg, MD, United States
| | - Martin Strain
- Antibody Discovery and Protein Engineering, MedImmune LTD., Cambridge, United Kingdom
| | - Ling-Ling An
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Saifur Rahman
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Wenting Ma
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Choon Pei Low
- Antibody Discovery and Protein Engineering, MedImmune LTD., Cambridge, United Kingdom
| | - Denice Chan
- Antibody Discovery and Protein Engineering, MedImmune LTD., Cambridge, United Kingdom
| | - Frances Neal
- Antibody Discovery and Protein Engineering, MedImmune LTD., Cambridge, United Kingdom
| | - Clifton O Bingham
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Kevon Sampson
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, United States
| | - Sarfaraz Hasni
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, United States
| | - Felipe Andrade
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Katherine A Vousden
- Antibody Discovery and Protein Engineering, MedImmune LTD., Cambridge, United Kingdom
| | - Tomas Mustelin
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| |
Collapse
|
37
|
Teo CY, Tejo BA, Leow ATC, Salleh AB, Abdul Rahman MB. Novel furan-containing peptide-based inhibitors of protein arginine deiminase type IV (PAD4). Chem Biol Drug Des 2017; 90:1134-1146. [PMID: 28581157 DOI: 10.1111/cbdd.13033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 01/12/2023]
Abstract
Protein arginine deiminase type IV (PAD4) is responsible for the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullinated protein is the autoantigen in rheumatoid arthritis, and therefore, PAD4 is currently a promising therapeutic target for the disease. Recently, we reported the importance of the furan ring in the structure of PAD4 inhibitors. In this study, the furan ring was incorporated into peptides to act as the "warhead" of the inhibitors for PAD4. IC50 studies showed that the furan-containing peptide-based inhibitors were able to inhibit PAD4 to a better extent than the furan-containing small molecules that were previously reported. The best peptide-based inhibitor inhibited PAD4 reversibly and competitively with an IC50 value of 243.2 ± 2.4 μm. NMR spectroscopy and NMR-restrained molecular dynamic simulations revealed that the peptide-based inhibitor had a random structure. Molecular docking studies showed that the peptide-based inhibitor entered the binding site and interacted with the essential amino acids involved in the catalytic activity. The peptide-based inhibitor could be further developed into a therapeutic drug for rheumatoid arthritis.
Collapse
Affiliation(s)
- Chian Ying Teo
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Bimo A Tejo
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Adam Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abu Bakar Salleh
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
38
|
Orsolini G, Caimmi C, Viapiana O, Idolazzi L, Fracassi E, Gatti D, Adami G, Rossini M. Titer-Dependent Effect of Anti-Citrullinated Protein Antibodies On Systemic Bone Mass in Rheumatoid Arthritis Patients. Calcif Tissue Int 2017; 101:17-23. [PMID: 28246933 DOI: 10.1007/s00223-017-0253-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/06/2017] [Indexed: 01/09/2023]
Abstract
Bone loss in rheumatoid arthritis (RA) is a key feature both local and systemic. Anti-citrullinated protein antibodies (ACPA) have recently been found to directly induce differentiation and activation of osteoclasts and therefore contribute to periarticular bone loss. The aim of this study was to analyze the effect of ACPA on systemic bone mineral density (BMD) in patients with established RA. This is a cross-sectional study with a single-center RA population. BMD was measured with Dual X-ray absorptiometry at lumbar and femoral sites. ACPA were measured by EIA. Multivariate analysis was performed adjusting for the main confounding variables. One hundred twenty-seven RA patients were enrolled. In univariate analysis, ACPA-positive patients showed lower BMD Z-score (SD below the age- and gender-matched mean reference value) at femoral sites (p < 0.01). A negative correlation between ACPA titer and BMD Z-score at all sites was observed (p < 0.01). The multivariate analysis adjusted for the main confounding variables confirmed the negative effect of ACPA at femoral sites (p < 0.05), but not at lumbar spine BMD. No significant effect of rheumatoid factor has been observed. ACPA have a negative titer-dependent effect on BMD at femoral sites, mainly constituted by cortical bone. ACPA-positive patients, especially if at high titer, should undergo bone investigations and be treated with bone protecting agents. Disease-modifying anti-rheumatic drugs lowering ACPA titer might have positive effects on systemic bone mass.
Collapse
Affiliation(s)
- Giovanni Orsolini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy.
| | - Cristian Caimmi
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Ombretta Viapiana
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Luca Idolazzi
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Fracassi
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Giovanni Adami
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
39
|
Sandigursky S, Silverman GJ, Mor A. Targeting the programmed cell death-1 pathway in rheumatoid arthritis. Autoimmun Rev 2017; 16:767-773. [PMID: 28572054 DOI: 10.1016/j.autrev.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023]
Abstract
Since the introduction of TNF-α inhibitors and other biologic agents, the clinical outcome for many treated rheumatoid arthritis patients has significantly improved. However, there are still a substantial proportion of patients that are intolerant, or have inadequate responses, with current agents that have become the standards of care. While the majority of these agents are designed to affect the inflammatory features of the disease, there are also agents in the clinic that instead target lymphocyte subsets (e.g., rituximab) or interfere with lymphocyte co-receptor signaling pathways (e.g., abatacept). Due in part to their ability to orchestrate downstream inflammatory responses that lead to joint damage and disease progression, pathogenic expansions of T and B lymphocytes are appreciated to play key roles in the pathogenesis of rheumatoid arthritis. New insights into immune regulation have suggested novel approaches for the pharmacotherapeutic targeting of lymphocytes. In this review, we discuss deepening insights into human genetics and our understanding of the interface with rheumatoid arthritis pathogenesis providing a strong rationale for exploiting the co-inhibitory receptor programmed cell death-1 signaling pathway as a better approach for the treatment of this chronic, often progressive destructive joint disease.
Collapse
Affiliation(s)
- Sabina Sandigursky
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY, United States
| | - Gregg J Silverman
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY, United States
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY, United States; Perlmutter Cancer Center, NYU School of Medicine, New York, NY, United States.
| |
Collapse
|
40
|
Baños-Hernández CJ, Navarro-Zarza JE, Parra-Rojas I, Vázquez-Villamar M, Ramón Padilla-Gutiérrez J, Valle Y, Reyes-Castillo Z, Magdalena Torres-Carrillo N, García-Arellano S, Brennan-Bourdon LM, Muñoz-Valle JF. PADI4 polymorphisms and the functional haplotype are associated with increased rheumatoid arthritis susceptibility: A replication study in a Southern Mexican population. Hum Immunol 2017; 78:553-558. [PMID: 28551357 DOI: 10.1016/j.humimm.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/03/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease with a complex genetic background. The peptidyl arginine deiminase type IV (PADI4) gene has been associated with RA susceptibility in several populations. We addressed the relationship between three exonic PADI4 gene single nucleotide polymorphisms (SNPs) PADI4_89 (rs11203366), PADI4_90 (rs11203367) and PADI4_92 (rs874881) and related haplotypes with RA in a population from Southern México. This study included 200 RA patients and 200 control subjects. The SNPs were evaluated using the polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) technique, and antibodies to cyclic citrullinated peptides (anti-CCP) were measured by enzyme-linked immunosorbent assay (ELISA). In this population, the minor alleles of PADI4_89∗G, PADI4_90∗T and PADI4_92∗G gene polymorphisms were associated with RA susceptibility (OR=1.34, p=0.04; OR=1.35, p=0.03; OR=1.34, p=0.04; respectively). The GTG haplotype was also significantly associated with RA (OR=2.27 95%CI=1.18-4.41; p=0.008), but did not show association with levels of anti-CCP antibodies and clinical parameters. In conclusion, our replication study in a Southern Mexican population suggests that PADI4 individual polymorphisms and the related susceptibility haplotype (GTG) are also genetic risk markers for RA.
Collapse
Affiliation(s)
- Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Reumatología, Hospital General de Chilpancingo "Dr. Raymundo Abarca Alarcón", Chilpancingo, Guerrero, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Mirna Vázquez-Villamar
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Ramón Padilla-Gutiérrez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Yeminia Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Zyanya Reyes-Castillo
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nora Magdalena Torres-Carrillo
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lorena Michele Brennan-Bourdon
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Comisión para la Protección contra Riesgos Sanitarios del Estado de Jalisco, (COPRISJAL), Secretaria de Salud, Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
41
|
Probing the Roles of Calcium-Binding Sites during the Folding of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7:2429. [PMID: 28546558 PMCID: PMC5445078 DOI: 10.1038/s41598-017-02677-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Our recent studies of peptidylarginine deiminase 4 (PAD4) demonstrate that its non-catalytic Ca2+-binding sites play a crucial role in the assembly of the correct geometry of the enzyme. Here, we examined the folding mechanism of PAD4 and the role of Ca2+ ions in the folding pathway. Multiple mutations were introduced into the calcium-binding sites, and these mutants were termed the Ca1_site, Ca2_site, Ca3_site, Ca4_site and Ca5_site mutants. Our data indicate that during the unfolding process, the PAD4 dimer first dissociates into monomers, and the monomers then undergo a three-state denaturation process via an intermediate state formation. In addition, Ca2+ ions assist in stabilizing the folding intermediate, particularly through binding to the Ca3_site and Ca4_site to ensure the correct and active conformation of PAD4. The binding of calcium ions to the Ca1_site and Ca2_site is directly involved in the catalytic action of the enzyme. Finally, this study proposes a model for the folding of PAD4. The nascent polypeptide chains of PAD4 are first folded into monomeric intermediate states, then continue to fold into monomers, and ultimately assemble into a functional and dimeric PAD4 enzyme, and cellular Ca2+ ions may be the critical factor governing the interchange.
Collapse
|
42
|
Fan L, Zong M, Gong R, He D, Li N, Sun LS, Ye Q, Yu S. PADI4 Epigenetically Suppresses p21 Transcription and Inhibits Cell Apoptosis in Fibroblast-like Synoviocytes from Rheumatoid Arthritis Patients. Int J Biol Sci 2017; 13:358-366. [PMID: 28367100 PMCID: PMC5370443 DOI: 10.7150/ijbs.16879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 12/27/2016] [Indexed: 01/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial lining hyperplasia, which involves abnormal growth of fibroblast-like synoviocytes (FLSs). This study aimed to investigate the function and molecular mechanism of peptidylarginine deiminase type 4 (PADI4) in FLSs isolated from RA patients (RA-FLSs). FLSs were isolated from RA patients and transfected with small interfering RNAs (siRNAs) or PADI4 overexpression plasmid. FLSs were treated by Adriamycin (ADR) to induce apoptosis, and apoptotic cells were detected by flow cytometry. The expression of PADI4, p53 and p21 was detected by qRT-PCR and Western blot analysis. The recruitment of PADI4 and histone H3 arginine modifications to p21 promoter was measured by chromatin immunoprecipitation. The results showed that knockdown of PADI4 promoted the apoptosis of RA-FLSs and the expression of p53 and p21. Ectopic expression of PADI4 inhibited ADR-induced apoptosis of RA-FLSs, and down-regulated the expression of p53 and p21. In RA-FLSs, global H3 citrullination (CitH3) and H3 arginine 17 methylation levels were dynamically changed by PADI4 and ADR treatment. PADI4 and H3 could bind p21 promoter region to regulate p21 expression. In conclusion, PADI4 contributes to the pathogenesis of RA by protecting FLSs from apoptosis. PADI4 suppresses p21 transcription through altering histone H3 arginine modifications on p21 promoter region. Our study provides new insight into the anti-apoptotic role of PADI4 in RA development.
Collapse
Affiliation(s)
- Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Ruhan Gong
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Dongyi He
- Department of Rheumatology, Guanghua Integrative Medicine Hospital, 540 Xin Hua Road, Shanghai 200052, PR China
| | - Niu Li
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Li Shan Sun
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Qin Ye
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
43
|
PADI4 and the HLA-DRB1 shared epitope in juvenile idiopathic arthritis. PLoS One 2017; 12:e0171961. [PMID: 28182665 PMCID: PMC5300194 DOI: 10.1371/journal.pone.0171961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/27/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Both genetic and environmental factors are associated with susceptibility to juvenile idiopathic arthritis (JIA). Many studies have reported that both a 'shared epitope' (SE) encoded by several HLA-DRB1 alleles and the peptidyl arginine deiminase type 4 (PADI4) gene polymorphisms are associated with susceptibility to rheumatoid arthritis (RA). However, it is uncertain whether JIA and RA share the latter genetic risk factor. Therefore, here we investigated relationships between HLA-SE and PADI4 polymorphisms with clinical subtypes of JIA. METHODS JIA patients (39 oligoarthritis, 48 RF-positive polyarthritis, 19 RF-negative polyarthritis and 82 systemic) and 188 healthy controls were genotyped for HLA-DRB1 by PCR-sequence-specific oligonucleotide probe methodology. Three PADI4 gene single nucleotide polymorphisms (SNPs), rs2240340, rs2240337 and rs1748033, were genotyped using TaqMan SNP Genotyping Assays. RESULTS Frequencies of the HLA-SE were higher in RF-positive polyarticular JIA than in healthy controls. RF-positive polyarticular JIA was associated with HLA-SE (OR = 5.3, 95% CI = 2.5-11.9, pc < 0.001). No associations were found between clinical subtypes of JIA and PADI4 allele frequency. Nonetheless, rs2240337 in the PADI4 gene was significantly associated with anti-cyclic citrullinated peptide antibody (ACPA)-positivity in JIA. The A allele at rs2240337 was a significant risk factor for ACPA positivity in JIA (OR = 5.6, 95% CI = 1.71-23.7 pc = 0.03). CONCLUSION PADI4 gene polymorphism is associated with ACPA-positivity in JIA. The association of HLA-SE with RF-positive polyarticular JIA as well as RA is confirmed in Japanese. Thus, HLA-SE and PADI4 status both influence JIA clinical manifestations.
Collapse
|
44
|
Bawadekar M, Shim D, Johnson CJ, Warner TF, Rebernick R, Damgaard D, Nielsen CH, Pruijn GJM, Nett JE, Shelef MA. Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. J Autoimmun 2017; 80:39-47. [PMID: 28188029 DOI: 10.1016/j.jaut.2017.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
Citrullination, the post-translational conversion of arginines to citrullines, may contribute to rheumatoid arthritis development given the generation of anti-citrullinated protein antibodies (ACPAs). However, it is not known which peptidylarginine deiminase (PAD) catalyzes the citrullination seen in inflammation. PAD4 exacerbates inflammatory arthritis and is critical for neutrophil extracellular traps (NETs). NETs display citrullinated antigens targeted by ACPAs and thus may be a source of citrullinated protein. However, PAD4 is not required for citrullination in inflamed lungs. PAD2 is important for citrullination in healthy tissues and is present in NETs, but its role in citrullination in the inflamed joint, NETosis and inflammatory arthritis is unknown. Here we use mice with TNFα-induced inflammatory arthritis, a model of rheumatoid arthritis, to identify the roles of PAD2 and PAD4 in citrullination, NETosis, and arthritis. In mice with TNFα-induced arthritis, citrullination in the inflamed ankle was increased as determined by western blot. This increase was unchanged in the ankles of mice that lack PAD4. In contrast, citrullination was nearly absent in the ankles of PAD2-deficient mice. Interestingly, PAD2 was not required for NET formation as assessed by immunofluorescence or for killing of Candida albicans as determined by viability assay. Finally, plasma cell numbers as assessed by flow cytometry, IgG levels quantified by ELISA, and inflammatory arthritis as determined by clinical and pathological scoring were all reduced in the absence of PAD2. Thus, PAD2 contributes to TNFα-induced citrullination and arthritis, but is not required for NETosis. In contrast, PAD4, which is critical for NETosis, is dispensable for generalized citrullination supporting the possibility that NETs may not be a major source of citrullinated protein in arthritis.
Collapse
Affiliation(s)
- Mandar Bawadekar
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Daeun Shim
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Thomas F Warner
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Ryan Rebernick
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Dres Damgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ger J M Pruijn
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
45
|
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol 2017; 8:81. [PMID: 28220120 PMCID: PMC5292617 DOI: 10.3389/fimmu.2017.00081] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.
Collapse
|
46
|
Umeda N, Matsumoto I, Tanaka Y, Kawaguchi H, Ebe H, Kagami Y, Ishigami A, Sumida T. Anti-cyclic citrullinated glucose-6-phosphate isomerase peptide-7 (CCG-7) antibodies were suppressed by biologics treatment and deposited to citrullinated proteins in CD68-positive cells in the RA synovium. Mod Rheumatol 2017; 27:914-916. [DOI: 10.1080/14397595.2016.1270388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Naoto Umeda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Rheumatology, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Tanaka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hoshimi Kawaguchi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ebe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yayoi Kagami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
47
|
Bawadekar M, Gendron-Fitzpatrick A, Rebernick R, Shim D, Warner TF, Nicholas AP, Lundblad LKA, Thompson PR, Shelef MA. Tumor necrosis factor alpha, citrullination, and peptidylarginine deiminase 4 in lung and joint inflammation. Arthritis Res Ther 2016; 18:173. [PMID: 27450561 PMCID: PMC4957385 DOI: 10.1186/s13075-016-1068-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
Background The relationship between lung and joint inflammation in rheumatoid arthritis is poorly understood. Lung inflammation with resultant protein citrullination may trigger anti-citrullinated protein antibodies, inflammation, and arthritis. Alternatively, lung and joint inflammation may be two manifestations of a single underlying pathology. The lung has increased citrullination and TNF-α levels are high in rheumatoid arthritis; however, it is unknown if TNF-α can induce lung protein citrullination. The citrullinating enzyme peptidylarginine deiminase 4 (PAD4) exacerbates TNF-α-induced arthritis, but a role for PAD4 in lung citrullination and TNF-α-induced lung inflammation has not been explored. Our aim was to use TNF-α-overexpressing mice to clarify the intersection of TNF-α, citrullination, PAD4, arthritis, and lung inflammation. Methods Lung protein citrullination in wild-type mice, mice that overexpress TNF-α systemically (TNF+), TNF+PAD4+/+, and TNF+PAD4-/- mice was quantified by both gel electrophoresis using a citrulline probe and western blot. Hematoxylin and eosin (H&E)-stained lung sections from TNF+PAD4+/+ and TNF+PAD4-/- mice were scored for lung inflammation. H&E-stained ankle joint sections from mice that overexpress TNF-α only in the lungs were assessed for arthritis. Results TNF+ mice have increased lung protein citrullination. TNF+PAD4-/- mice do not have significantly reduced lung protein citrullination, but do have decreased lung inflammation compared to TNF+PAD4+/+ mice. Mice that overexpress TNF-α only in the lungs do not develop arthritis. Conclusions PAD4 exacerbates lung inflammation downstream of TNF-α without having a major role in generalized protein citrullination in inflamed lungs. Also, TNF-α-induced lung inflammation is not sufficient to drive murine arthritis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1068-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mandar Bawadekar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Annette Gendron-Fitzpatrick
- Research Animal Resource Center Comparative Pathology Lab and Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Rebernick
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Daeun Shim
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas F Warner
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony P Nicholas
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL, USA
| | | | - Paul R Thompson
- Departments of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
48
|
Decreased severity of experimental autoimmune arthritis in peptidylarginine deiminase type 4 knockout mice. BMC Musculoskelet Disord 2016; 17:205. [PMID: 27150598 PMCID: PMC4858923 DOI: 10.1186/s12891-016-1055-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/10/2015] [Indexed: 02/05/2023] Open
Abstract
Background Peptidylarginine deiminase type 4 (PADI4) has been identified as a susceptibility gene for rheumatoid arthritis (RA) by genome-wide association studies. PADI4 is highly expressed in the bone marrow, macrophages, neutrophils, and monocytes. Peptidyl citrulline is an interesting molecule in RA because it is a target antigen for anti-citrullinated peptide antibodies, and only PADs (translated proteins from PADI genes) can provide peptidyl citrulline via the modification of protein substrates. The aim of this study was to evaluate the importance of the PADI4 gene in the progression of RA. Methods We generated Padi4 knockout (Padi4−/−) DBA1J mice. The Padi4−/− DBA1J and wild-type mice were immunized with bovine type II collagen (CII) to develop collagen-induced arthritis (CIA). The expression of various inflammatory cytokines and Padi genes in immune cells was detected by the real-time TaqMan assay. Cytokine concentrations in sera were measured by enzyme-linked immunosorbent assays. Localization of the PAD4 and PAD2 proteins was indicated by immunohistochemistry. Results We demonstrated that the clinical disease score was significantly decreased in the Padi4−/− mice and Padi4 expression was induced by CII immunization. In the Padi4−/− mice, serum anti-type II collagen (CII) immunoglobulin M (IgM), IgG, and inflammatory cytokine levels were significantly decreased compared with those in the wild-type mice. Padi2 expression was induced in the immune cells of the Padi4−/− mice as a compensation for the defect in Padi4. Conclusions Padi4 affected disease severity in the CIA mice and was involved in the enhancement of the collagen-initiated inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1055-2) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Cambridge G, Leandro MJ, Lahey LJ, Fairhead T, Robinson WH, Sokolove J. B cell depletion with rituximab in patients with rheumatoid arthritis: Multiplex bead array reveals the kinetics of IgG and IgA antibodies to citrullinated antigens. J Autoimmun 2016; 70:22-30. [PMID: 27055777 DOI: 10.1016/j.jaut.2016.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
The serology of patients with Rheumatoid arthritis (RA) is characterized by persistently raised levels of autoantibodies: Rheumatoid Factors (RhF) against Fc of IgG, and to citrullinated (Cit) protein/peptide sequences: ACPA, recognizing multiple Cit-sequences. B cell depletion therapy based on rituximab delivers good clinical responses in RA patients, particularly in the seropositive group, with responses sometimes lasting beyond the phase of B cell reconstitution. In general, ACPA levels fall following rituximab, but fluctuations with respect to predicting relapse have proved disappointing. In order to identify possible immunodominant specificities within either IgG- or IgA-ACPA we used a Multiplex bead-based array consisting of 30 Cit-peptides/proteins and 22 corresponding native sequences. The kinetics of the serum ACPA response to individual specificities was measured at key points (Baseline, B cell depletion phase, Relapse) within an initial cycle of rituximab therapy in 16 consecutive patients with severe, active RA. All had achieved significant decreases in Disease Activity Scores-28 and maintained B cell depletion in the peripheral blood (<5 CD19+cells/μl) for at least 3 months. At Baseline, mean fluorescence intensity shown by individual IgG- and IgA-ACPA were strongly correlated (R(2) = 0.75; p < 0.0001) but IgA-ACPA were approximately 10-fold lower. Data were Z-normalised in order to compare serial results and antibody classes. At Baseline, a total of 68 IgG- and 51 IgA-ACPA had Z-scores ≥ 1 (above population mean) were identified, with at least one Cit-antigen identified in each serum. ACPA to individual specificities subsequently fluctuated with 3 different patterns. Most 51/68 (75%) IgG- and 48/51 IgA-ACPA (94%) fell between Baseline and Depletion, of which 57% IgG- and 65% IgA-ACPA rebounded pre-Relapse. Interestingly, 17/68 IgG-ACPA (25%) and some IgA-ACPA (3/51; 6%) transiently increased from Baseline, subsequently falling pre-Relapse. Individual responses to particular Cit-epitopes were not linked to particular patterns of fluctuation, but IgG- and IgA-ACPA to individual Cit-antigens often followed similar courses. Some new IgG- and IgA-ACPA, generally to different Cit-antigens however, arose at Relapse in 4 patients. The complexities of the ACPA response after rituximab may therefore reflect its ability to deplete or modify the function of parent B cell clones, which varies between patients. Although relapse following rituximab invariably follows naïve B cell exit from the bone marrow, these studies show that interactions between both 'new' and residual autoreactive memory B cells may be key to resumption of symptoms. The lack of identification of any immunodominant specificity suggests that the process of citrullination, rather than any particular Cit-antigen drives the autoimmune response in RA patients.
Collapse
Affiliation(s)
| | | | - Lauren J Lahey
- VA Palo Alto Healthcare System and Stanford University, USA
| | | | | | | |
Collapse
|
50
|
Emily M. AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies. Stat Appl Genet Mol Biol 2016; 15:151-171. [PMID: 26913459 DOI: 10.1515/sagmb-2015-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Among the large of number of statistical methods that have been proposed to identify gene-gene interactions in case-control genome-wide association studies (GWAS), gene-based methods have recently grown in popularity as they confer advantage in both statistical power and biological interpretation. All of the gene-based methods jointly model the distribution of single nucleotide polymorphisms (SNPs) sets prior to the statistical test, leading to a limited power to detect sums of SNP-SNP signals. In this paper, we instead propose a gene-based method that first performs SNP-SNP interaction tests before aggregating the obtained p-values into a test at the gene level. Our method called AGGrEGATOr is based on a minP procedure that tests the significance of the minimum of a set of p-values. We use simulations to assess the capacity of AGGrEGATOr to correctly control for type-I error. The benefits of our approach in terms of statistical power and robustness to SNPs set characteristics are evaluated in a wide range of disease models by comparing it to previous methods. We also apply our method to detect gene pairs associated to rheumatoid arthritis (RA) on the GSE39428 dataset. We identify 13 potential gene-gene interactions and replicate one gene pair in the Wellcome Trust Case Control Consortium dataset at the level of 5%. We further test 15 gene pairs, previously reported as being statistically associated with RA or Crohn's disease (CD) or coronary artery disease (CAD), for replication in the Wellcome Trust Case Control Consortium dataset. We show that AGGrEGATOr is the only method able to successfully replicate seven gene pairs.
Collapse
|