1
|
Li T, Liu Z, Hu J, Chen L, Chen T, Tang Q, Yu B, Zhao B, Mao C, Wan M. A Universal Chemotactic Targeted Delivery Strategy for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206654. [PMID: 36122571 DOI: 10.1002/adma.202206654] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Above 50% of deaths can be attributed to chronic inflammatory diseases; thus, the construction of drug delivery systems based on effective interaction of inflammatory factors with chemotactic nanoparticles is meaningful. Herein, a zwitterion-based artificial chemotactic nanomotor is proposed for universal precise targeting strategy in vivo, where the high level of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in inflammatory sites are used as a chemoattractant. Multidimensional static models, dynamic models, and in vivo models are established to evaluate chemotactic performance. The results show that the upregulated ROS and iNOS can induce the chemotaxis of nanomotors to diseased tissues in inflammation-related disease models. Further, mesoscale hydrodynamics simulations are performed to explain the chemotactic behavior of the nanomotors. Such a chemotactic delivery strategy is expected to improve delivery efficiency and may be applicable to a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qianqian Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bixia Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
2
|
Toan NK, Ahn SG. Aging-Related Metabolic Dysfunction in the Salivary Gland: A Review of the Literature. Int J Mol Sci 2021; 22:5835. [PMID: 34072470 PMCID: PMC8198609 DOI: 10.3390/ijms22115835] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aging-related salivary dysfunction commonly induces the poor oral health, including decreased saliva flow and dental caries. Although the clinical significance of the salivary glands is well-known, the complex metabolic pathways contributing to the aging-dysfunction process are only beginning to be uncovered. Here, we provide a comprehensive overview of the metabolic changes in aging-mediated salivary gland dysfunction as a key aspect of oral physiology. Several metabolic neuropeptides or hormones are involved in causing or contributing to salivary gland dysfunction, including hyposalivation and age-related diseases. Thus, aging-related metabolism holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in salivary gland dysfunction.
Collapse
Affiliation(s)
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
3
|
Bas N, Kayar NA, Baba ZF, Avunduk MC, Haliloğlu S, Alptekin NÖ. Systemic treatment with alpha-tocopherol and/or sodium selenite decreases the progression of experimental periodontitis. Clin Oral Investig 2020; 25:2677-2688. [PMID: 32986166 DOI: 10.1007/s00784-020-03579-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/10/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the effects of sodium selenite (Se) and/or α-tocopherol (αT) applications on the alveolar bone loss (ABL), the number of gingival collagen fibers, inducible nitric oxide synthase (iNOS)+ and CD95+ cell numbers, and serum cytokine concentrations in experimental periodontitis in rats. MATERIALS AND METHODS Forty Sprague Dawley rats were divided into four groups of ten as follows: group A: Se group, group B: αT group, group C: Se and αT combined group, and group D: control group (intraperitoneal (IP) saline injection applied). Using the image analysis method in the connective tissue under the connective epithelium, the numbers of iNOS, CD95 positive cells, and collagen fibers were counted. ELISA kits were used to test the concentrations of serum interleukin (IL)-1β, IL-6, and IL-4. RESULTS The combination of Se and αT (group C) suppressed ABL compared with the control group (group D) (P < 0.05). In group A (Se), the number of iNOS+ cells was smaller than in group D (P < 0.05). CONCLUSION Se has been concluded to inhibit inflammation of the gum due to iNOS. Se and αT can have a remarkable important role in preventing alveolar bone loss, and particularly in combination. CLINICAL RELEVANCE Se and/or αT application may be useful in preventing the destruction of periodontal tissue and treatment of periodontal disease.
Collapse
Affiliation(s)
- Nurgül Bas
- Kayseri Nimet Bayraktar Oral and Dental Health Center, Republic of Turkey Ministry of Health, Kayseri, Turkey
| | - Nezahat Arzu Kayar
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey.
| | - Z Füsun Baba
- Patology Laboratory, Acıbadem International Hospital, İstanbul, Turkey
| | - Mustafa Cihat Avunduk
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Seyfullah Haliloğlu
- Department of Biochemistry, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Nilgün Özlem Alptekin
- Department of Periodontology, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|
4
|
Sone R, Eda N, Kosaki K, Endo M, Watanabe K. Influence of acute high-intensity exercise on salivary nitric oxide levels. J Oral Sci 2019; 61:307-312. [PMID: 31217380 DOI: 10.2334/josnusd.18-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study, employing an exercise versus control crossover design, was conducted to investigate the influence of acute high-intensity exercise on salivary nitric oxide (NO) levels. Nine healthy males (aged 23.8 ± 1.4 years) performed ergometer exercise at 80%VO2peak for 60 min, whereas controls sat at rest for 60 min. Saliva samples were collected before (Pre: 0800 h) and after (Post 0-h: 0900 h, Post 1-h: 1000 h, Post 2-h: 1100 h, Post 3-h: 1200 h) the interventions. Salivary NO levels were determined by colorimetric assay. It was found that the salivary NO levels in controls were decreased (P < 0.05) at Post 0-h (-94 ± 15), Post 1-h (-80 ± 20), Post 2-h (-92 ± 34) and Post 3-h (-145 ± 39) relative to the Pre values. Under exercise conditions, salivary NO levels did not change after high-intensity ergometer exercise relative to the Pre values. Thus, the response of salivary NO levels appeared to differ between high-intensity ergometer exercise and inactivity, that exercise-related stress induces the production of salivary NO.
Collapse
Affiliation(s)
- Ryota Sone
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | | | - Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba
| | | | | |
Collapse
|
5
|
Sone R, Matsuba K, Tahara R, Eda N, Kosaki K, Jesmin S, Miyakawa S, Watanabe K. Assessment of Salivary Nitric Oxide Levels in Elite University Athletes in Japan: Findings From a Cross Sectional Study Design. J Clin Med Res 2019; 11:114-120. [PMID: 30701003 PMCID: PMC6340678 DOI: 10.14740/jocmr3670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background High-intensity exercise affects the level of salivary nitric oxide (NO) with an impact on oxidative stress such as a reactive nitrogen-oxide species. However, in athletes with high-intensity training, the relationship between salivary NO levels and oxidative stress is yet to be clear. Additionally, the association of salivary NO levels and the common health disorders of athletes is unknown. Thus, the aim of this cross-sectional study was to clarify the relationship between salivary NO levels and oxidative stress, and the health/medical disorders existing in elite class university athletes. Methods In 250 athletes (males, 151 and females, 99) from undergraduate levels of Japanese University, we investigated the relationship between levels of salivary NO and oxidative stress markers: derived reactive oxygen species (d-ROMs) and biological antioxidant potential (BAP), and also examined that whether salivary NO levels are associated with diseases. Results There were no significant association between the levels of salivary NO and oxidative stress markers (such as d-ROM and BAP). From the questionnaire, asthma was the most prevalent as evident from medical history of the athletes. Additionally, the salivary NO levels were higher (520 ± 43 µmol/L vs. 375 ± 13 µmol/L, P < 0.05) in the asthma group (n = 9) than in the non-asthma group (n = 241). We determined the optimal cut-off value (P = 0.019) of the salivary NO levels for asthma was 425 µmol/L, with a sensitivity of 88.9% and specificity of 61.8% (area under the curve (AUC), 0.73). Conclusions Our results suggest that the high levels of salivary NO in trained university athletes in Japan may potentially predict asthma. And this salivary NO level is not associated with markers of oxidative stress and existing diseases in athletes studied here.
Collapse
Affiliation(s)
- Ryota Sone
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kai Matsuba
- Tsukuba Sports Medicine and Health Science Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Rei Tahara
- Sports Research and Development Core, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nobuhiko Eda
- Faculty of Sports Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Keisei Kosaki
- Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Subrina Jesmin
- Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Shumpei Miyakawa
- Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koichi Watanabe
- Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
The Process of Acclimation to Chronic Hypoxia Leads to Submandibular Gland and Periodontal Alterations: An Insight on the Role of Inflammatory Mediators. Mediators Inflamm 2018; 2018:6794508. [PMID: 30622434 PMCID: PMC6304881 DOI: 10.1155/2018/6794508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 10/28/2018] [Indexed: 12/28/2022] Open
Abstract
The exposition to hypoxia is a stressful stimulus, and the organism develops acclimation mechanisms to ensure homeostasis, but if this fails, it leads to the development of pathological processes. Considering the large number of people under hypoxic conditions, it is of utmost importance to study the mechanisms implicated in hypoxic acclimation in oral tissues and the possible alteration of some important inflammatory markers that regulate salivary and periodontal function. It is the aim of the present study to analyze submandibular (SMG) and periodontal status of animals chronically exposed to continuous (CCH) or intermittent (CIH) hypoxia in order to elucidate the underlying molecular mechanisms that may lead to hypoxic acclimation. Adult Wistar rats were exposed to CCH or CIH simulating 4200 meters of altitude during 90 days. Salivary secretion was decreased in animals exposed to hypoxia, being lower in CIH, together with increased prostaglandin E2 (PGE2) content, TBARS concentration, and the presence of apoptotic nuclei and irregular secretion granules in SMG. AQP-5 mRNA levels decreased in both hypoxic groups. Only the CCH group showed higher HIF-1α staining, while CIH alone exhibited interradicular bone loss and increased concentration of the bone resorption marker CTX-I. In summary, animals exposed to CIH show a worse salivary secretion rate, which related with higher levels of PGE2, suggesting a negative role of this inflammatory mediator during hypoxia acclimation. We link the weak immunorreactivity of HIF-1α in CIH with improper hypoxia acclimation, which is necessary to sustaining SMG physiology under this environmental condition. The alveolar bone loss observed in CIH rats could be due mainly to a direct effect of PGE2, as suggested by its higher content in gingival tissue, but also to the indirect effect of hyposalivation. This study may eventually contribute to finding therapeutics to treat the decreased salivary flow, improving in that way oral health.
Collapse
|
7
|
Bhattarai KR, Junjappa R, Handigund M, Kim HR, Chae HJ. The imprint of salivary secretion in autoimmune disorders and related pathological conditions. Autoimmun Rev 2018; 17:376-390. [DOI: 10.1016/j.autrev.2017.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
8
|
Shaalan A, Carpenter G, Proctor G. Caspases are key regulators of inflammatory and innate immune responses mediated by TLR3 in vivo. Mol Immunol 2018; 94:190-199. [PMID: 29331803 DOI: 10.1016/j.molimm.2017.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Understanding the key regulators which impact the innate immune response during initial phases of tissue injury, can advance the use of therapeutic approaches which aim at attenuating inflammation and organ damage. Recognition of microbial components by TLRs, initiates the transcription of innate immune signal pathways, that induce the expression of key inflammatory mediators: cytokines, chemokines and adhesion molecules. Beside regulating apoptotic cell death, recent studies have revealed distinct roles for caspases in the optimal production of inflammatory cytokines and host defense against injurious infections. Whether caspases can play an immune regulatory role in vivo has not been sufficiently investigated. This study aims to explore whether the pan caspase inhibitor z-VAD-fmk can control inflammation and cytokine production subsequent to challenging the innate immunity of the exocrine secretory tissues in vivo. Submandibular glands (SMGs) of the C57BL/6 mice were challenged with the TLR3 stimulant: polyinosinic-polycytidylic acid (poly (I:C)). Results obtained from the current study provide evidence that caspases can control immune responses downstream of TLR3 ligation. The present work proposes a novel mechanism that can prevent overactivation of the innate immunity, which typically leads to fatal immune disorders.
Collapse
Affiliation(s)
- Abeer Shaalan
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK.
| | - Guy Carpenter
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Gordon Proctor
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| |
Collapse
|
9
|
Shaalan A, Carpenter G, Proctor G. Epithelial disruptions, but not immune cell invasion, induced secretory dysfunction following innate immune activation in a novel model of acute salivary gland injury. J Oral Pathol Med 2017; 47:211-219. [PMID: 29160910 DOI: 10.1111/jop.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Salivary gland (SG) injurious agents are all translated into loss of salivation (xerostomia). An association has been established between activation of innate immunity and SG injury and dysfunction. However, it remains unclear how the secretory epithelia respond by halting saliva production. METHODS C57BL/6 submandibular glands (SMGs) were acutely challenged using a single dose of the innate immune stimulant: polyinosinic-polycytidylic acid (poly (I:C)). Secretory capacity of the infected SMGs was substantiated by assessing the flow rate in response to pilocarpine stimulation. Depletion of the acute inflammatory cells was achieved by pre-treating mice with RB6-8C5 depletion antibody. Flow cytometry, histology and immunohistochemistry were conducted to verify the immune cell depletion. Epithelial expression of saliva-driving molecules: muscarinic 3 receptor (M3R), aquaporin 5 water channel (AQP5), Na-K-CL-Cotransporter 1 (NKCC1) and transmembrane member 16A (TMEM16A), was characterized using RT-qPCR and immunohistochemistry. Tight junction (TJ) protein; zonula occludens (ZO-1) and basement membrane (BM) protein; and laminin were assessed by immunohistochemistry. RESULTS Innate immune challenge prompted dysfunction in the exocrine SGs. Dysregulated gene and protein expression of molecules that drive saliva secretion was substantiated. Aberrant expression of TJ and BM proteins followed innate immune activation. Hyposalivation in the current model was independent of myeloperoxidase (MPO)-positive, acute inflammatory cells. CONCLUSIONS In this study, we developed a novel injury model of the SGs, featuring acute secretory dysfunction and immediate structural disruptions. Our results ruled out the injurious role of aggressively infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Abeer Shaalan
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Guy Carpenter
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Gordon Proctor
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
10
|
Affiliation(s)
- Ana Raquel Rodrigues
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal and
| | - Raquel Soares
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal and
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Production and physiological role of NO in the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2015; 52:14-21. [PMID: 28408951 PMCID: PMC5382787 DOI: 10.1016/j.jdsr.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) is a free radical which is produced from a wide variety of cells and tissues in the human body. NO is involved in the regulation of many physiological processes, such as vascular relaxation, neurotransmission, immune regulation, and cell death. NO is generated by nitric oxide synthase (NOS), which has three identified isoforms: neuronal type NOS (nNOS), endothelial type NOS (eNOS), and inducible type NOS (iNOS). Different isoforms are expressed depending on the organs, tissues, and cells, and investigation of the types and functions of enzymes expressed in various tissues is underway. The oral cavity is a space in which marked changes have been detected in NO levels, and each tissue is constantly influenced by NO. NO is a component of saliva and is produced by oral bacteria in the oral cavity and released by NOS expressed in oral mucosa. NOS isoforms expressed under normal conditions differ among the oral organs. In addition, the overexpression of NOS was involved in carcinogenesis and tumor growth progression. This review summarized the expression of NOS and functions of NO in oral cavity organs, and their roles in diseases and the influences of treatments.
Collapse
|
12
|
Roganović J, Djukić LJ, Kršljak E, Tanić N, Stojić D. Reduced muscarinic parotid secretion is underlain by impaired NO signaling in diabetic rabbits. Oral Dis 2015; 21:634-40. [PMID: 25703905 DOI: 10.1111/odi.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The influence of experimental diabetes (alloxan, 100 mg kg(-1) ) was studied on rabbit parotid gland function. MATERIAL AND METHODS Carbachol-induced parotid secretion in vivo, and in vitro quantification of inducible nitric oxide synthase (iNOS) mRNA expression, by real-time RT-PCR, and activity of superoxide dismutase (SOD) and total antioxidant capacity (TAC) in commercial colorimetric assays were measured in parotid glands of non-diabetic and diabetic rabbits. RESULTS Carbachol-induced dose-dependent increase in parotid secretion significantly reduced in diabetic rabbits. Functional studies in the presence of muscarinic receptor and nitric oxide synthase (NOS) antagonists revealed that in M3 receptor-mediated carbachol secretion, nitric oxide, deriving mainly from neuronal NOS (nNOS) in control, and iNOS in diabetic rabbits, was involved. Also, upregulation of iNOS mRNA expression and enhanced SOD activity and TAC were detected in diabetic glands. CONCLUSIONS Our data suggest that decreased M3 receptor-mediated parotid secretion in diabetic rabbits appears to be due to alterations in NO signaling, mainly due to iNOS induction, accompanied by elevated antioxidant response.
Collapse
Affiliation(s)
- J Roganović
- Department of Pharmacology in Dentistry, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| | - L J Djukić
- Department of Pharmacology in Dentistry, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| | - E Kršljak
- Department of Physiology, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| | - N Tanić
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - D Stojić
- Department of Pharmacology in Dentistry, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Prestifilippo JP, Medina VA, Mohn CE, Rodriguez PA, Elverdin JC, Fernandez-Solari J. Endocannabinoids mediate hyposalivation induced by inflammogens in the submandibular glands and hypothalamus. Arch Oral Biol 2013; 58:1251-9. [PMID: 23684250 DOI: 10.1016/j.archoralbio.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the factors that could participate on salivary glands hypofunction during inflammation and the participation of endocannabinoids in hyposalivation induced by the presence of inflammogens in the submandibular gland (SMG) or in the brain. DESIGN Salivary secretion was assessed in the presence of inflammogens and/or the cannabinoid receptor antagonist AM251 in the SMG or in the brain of rats. At the end of the experiments, some systemic and glandular inflammatory markers were measured and histopathological analysis was performed. RESULTS The inhibitory effect observed 1h after lipopolysaccharide (LPS, 50μg/50μl) injection into the SMG (ig) was completely prevented by the injection of AM251 (5μg/50μl) by the same route (P<0.05). The LPS (ig)-induced increase in PGE2 content was not altered by AM251 (ig), while the glandular production of TNFα induced by the endotoxin (P<0.001) was partially blocked by it. Also, LPS injection produced no significant changes in the wet weight of the SMG neither damage to lipid membranes of its cells, nor significant microscopic changes in them, after hispopathological analysis, compared to controls. Finally, TNFα (100ng/5μl) injected intracerebro-ventricularly (icv) inhibited methacholine-induced salivary secretion evaluated 30min after (P<0.01), but the previous injection of AM251 (500ng/5μl, icv) prevented completely that effect. CONCLUSION We conclude that endocannabinoids mediate the hyposialia induced by inflammogens in the SMG and in the brain. The hypofunction would be due to changes on signalling pathway produced by inflammatory compounds since anatomical changes were not observed.
Collapse
Affiliation(s)
- J P Prestifilippo
- Department of Physiology, Dental School, University of Buenos Aires, Marcelo T.de Alvear 2142, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Bombardieri M, Barone F, Lucchesi D, Nayar S, van den Berg WB, Proctor G, Buckley CD, Pitzalis C. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3767-76. [PMID: 22942425 PMCID: PMC3448973 DOI: 10.4049/jimmunol.1201216] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salivary glands in patients with Sjögren's syndrome (SS) develop ectopic lymphoid structures (ELS) characterized by B/T cell compartmentalization, the formation of high endothelial venules, follicular dendritic cell networks, functional B cell activation with expression of activation-induced cytidine deaminase, as well as local differentiation of autoreactive plasma cells. The mechanisms that trigger ELS formation, autoimmunity, and exocrine dysfunction in SS are largely unknown. In this article, we present a novel model of inducible ectopic lymphoid tissue formation, breach of humoral self-tolerance, and salivary hypofunction after delivery of a replication-deficient adenovirus-5 in submandibular glands of C57BL/6 mice through retrograde excretory duct cannulation. In this model, inflammation rapidly and consistently evolves from diffuse infiltration toward the development of SS-like periductal lymphoid aggregates within 2 wk from AdV delivery. These infiltrates progressively acquire ELS features and support functional GL7(+)/activation-induced cytidine deaminase(+) germinal centers. Formation of ELS is preceded by ectopic expression of lymphoid chemokines CXCL13, CCL19, and lymphotoxin-β, and is associated with development of anti-nuclear Abs in up to 75% of mice. Finally, reduction in salivary flow was observed over 3 wk post-AdV infection, consistent with exocrine gland dysfunction as a consequence of the inflammatory response. This novel model has the potential to unravel the cellular and molecular mechanisms that regulate ELS formation and their role in exocrine dysfunction and autoimmunity in SS.
Collapse
Affiliation(s)
- Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, University of Birmingham, Birmingham, United Kingdom
| | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, University of Birmingham, Birmingham, United Kingdom
| | - Wim B van den Berg
- Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gordon Proctor
- Oral Medicine and Pathology, King’s College, London, United Kingdom
| | | | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Godoy T, Riva A, Ekström J. Clozapine-induced salivation: interaction with N-desmethylclozapine and amisulpride in an experimental rat model. Eur J Oral Sci 2011; 119:275-81. [PMID: 21726287 DOI: 10.1111/j.1600-0722.2011.00832.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many drugs (e.g. amisulpride) have been used to treat troublesome clozapine-induced salivation; however, varying success has been achieved in this respect, probably because, until recently, the salivatory action of clozapine has been largely unexplained. In the rat, clozapine and its main metabolite, N-desmethylclozapine, were found to exert mixed secretory actions: excitatory, through muscarinic acetylcholine M1-receptors giving rise to a long-lasting, low-level flow of saliva; and inhibitory, through muscarinic M3-receptors and α(1) -adrenoceptors reducing the parasympathetically and sympathetically nerve-evoked flow of saliva. The aim of the present study was to define the interactions between clozapine and N-desmethylclozapine, and clozapine and amisulpride, with respect to the excitatory response. Submandibular glands, sensitized by chronic parasympathetic preganglionic denervation, were studied in pentobarbitone-anaesthetized rats. To prevent clozapine from being metabolized to N-desmethylclozapine by hepatic enzymes, the liver was, under terminal anaesthesia, excluded from the circulation. The weak receptor-stimulating clozapine prevented the strong receptor-stimulating N-desmethylclozapine, at specific ratios in humans and in rats, from exerting its full agonistic action. In conclusion, the contribution of N-desmethylclozapine to the clozapine-induced sialorrhoea was, at most, only partly additive. Furthermore, the present experimental set-up failed to demonstrate any anti-salivatory action of amisulpride on the clozapine-induced flow of saliva.
Collapse
Affiliation(s)
- Tania Godoy
- Division of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | | | | |
Collapse
|
16
|
Roganović J, Radenković M, Tanić N, Tanić N, Petrović N, Stojić D. Impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated parotid artery of the alloxan-induced diabetic rabbit. Eur J Oral Sci 2011; 119:352-60. [PMID: 21896051 DOI: 10.1111/j.1600-0722.2011.00851.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Seil M, El Ouaaliti M, Abdou Foumekoye S, Pochet S, Dehaye JP. Distinct regulation by lipopolysaccharides of the expression of interleukin-1β by murine macrophages and salivary glands. Innate Immun 2010; 18:14-24. [PMID: 20682589 DOI: 10.1177/1753425910377101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regulation of interleukin (IL)-1 expression and secretion by salivary glands and macrophages in response to lipopolysaccharides (LPS) was compared. In wild-type mice, injection of LPS significantly decreased the volume of saliva stimulated by pilocarpine and increased its protein and amylase concentration. It did not modify the salivary concentration of IL-1β. The cytokine was expressed by submandibular acini and ducts. Macrophages also expressed IL-1β but at lower concentration than salivary glands. The pre-incubation of macrophages with LPS increased the phosphorylation of IκB and the expression of IL-1β. Adenosine triphosphate also promoted the secretion of the cytokine by these cells. These responses were absent in submandibular gland cells. These glands expressed CD14, TLR4 and MyD88. P2X(7)-KO mice secreted a lower volume of saliva which contained less proteins and amylase. In conclusion, IL-1β is constitutively expressed by submandibular glands and its secretion is not regulated by a P2X(7) agonist. In these cells, LPS do not activate the nuclear factor-κB-pro-IL-1β axis in spite of the expression of the proteins involved in their recognition.
Collapse
Affiliation(s)
- M Seil
- Laboratoire de Chimie biologique et médicale et de Microbiologie pharmaceutique, Institut de Pharmacie, Université libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|