1
|
Louzon M, Pauget B, Gimbert F, Morin-Crini N, Wong JWY, Zaldibar B, Natal-da-Luz T, Neuwirthova N, Thiemann C, Sarrazin B, Irazola M, Amiot C, Rieffel D, Sousa JP, Chalot M, de Vaufleury A. In situ and ex situ bioassays with Cantareus aspersus for environmental risk assessment of metal(loid) and PAH-contaminated soils. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:539-554. [PMID: 34138503 DOI: 10.1002/ieam.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Environmental risk assessment of contaminated soils requires bioindicators that allow the assessment of bioavailability and toxicity of chemicals. Although many bioassays can determine the ecotoxicity of soil samples in the laboratory, few are available and standardized for on-site application. Bioassays based on specific threshold values that assess the in situ and ex situ bioavailability and risk of metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) in soils to the land snail Cantareus aspersus have never been simultaneously applied to the same soils. The aims of this study were to compare the results provided by in situ and ex situ bioassays and to determine their respective importance for environmental risk assessment. The feasibility and reproducibility of the in situ bioassay were assessed using an international ring test. This study used five plots located at a former industrial site and six laboratories participated in the ring test. The results revealed the impact of environmental parameters on the bioavailability of metal(loid)s and PAHs to snails exposed in the field to structured soils and vegetation compared to those exposed under laboratory conditions to soil collected from the same field site (excavated soils). The risk coefficients were generally higher ex situ than in situ, with some exceptions (mainly due to Cd and Mo), which might be explained by the in situ contribution of plants and humus layer as sources of exposure of snails to contaminants and by climatic parameters. The ring test showed good agreement among laboratories, which determined the same levels of risk in most of the plots. Comparison of the bioavailability to land snails and the subsequent risk estimated in situ or ex situ highlighted the complementarity between both approaches in the environmental risk assessment of contaminated soils, namely, to guide decisions on the fate and future use of the sites (e.g., excavation, embankments, and land restoration). Integr Environ Assess Manag 2022;18:539-554. © 2021 SETAC.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
| | | | - Frédéric Gimbert
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
| | - Nadia Morin-Crini
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
| | - Janine W Y Wong
- Swiss Centre for Applied Ecotoxicology, EPFL ENAC IIE-GE, Lausanne, Switzerland
| | - Beñat Zaldibar
- Research Centre for Experimental Marine Biology & Biotechnology, Plentzia Marine Station University of the Basque Country (PiE-UPV/EHU), Plentzia-Bizkaia, Basque Country, Spain
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Basque Country, Spain
| | - Tiago Natal-da-Luz
- Department of Life Sciences, Centre for Functional Ecology, Science for People & The Planet, University of Coimbra, Coimbra, Portugal
| | | | - Christina Thiemann
- Swiss Centre for Applied Ecotoxicology, EPFL ENAC IIE-GE, Lausanne, Switzerland
| | - Bernard Sarrazin
- INSAVALOR, Campus LyonTech La Doua, Centre d'Entreprise et d'Innovation, CS 52132, Villeurbanne Cedex, France
| | - Mireia Irazola
- Research Centre for Experimental Marine Biology & Biotechnology, Plentzia Marine Station University of the Basque Country (PiE-UPV/EHU), Plentzia-Bizkaia, Basque Country, Spain
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Basque Country, Spain
| | - Caroline Amiot
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
| | - Dominique Rieffel
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
| | - José P Sousa
- Department of Life Sciences, Centre for Functional Ecology, Science for People & The Planet, University of Coimbra, Coimbra, Portugal
| | - Michel Chalot
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
- Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Annette de Vaufleury
- Department Chrono-Environment, UMR CNRS 6249, University of Bourgogne Franche-Comté, Besançon Cedex, France
| |
Collapse
|
2
|
Foulkes M, Millward G, Henderson S, Blake W. Bioaccessibility of U, Th and Pb in solid wastes and soils from an abandoned uranium mine. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 173:85-96. [PMID: 27979647 DOI: 10.1016/j.jenvrad.2016.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/27/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
Bioaccessible U, Th, Pb and the 238U decay products 214Pb and 210Pb have been determined, using a modified Unified BARGE Method (UBM), in waste solids and soils from an abandoned uranium mine in South West England, UK. Maximum aqua regia extractable concentrations for U, Th and Pb were 16,200, 3.8 and 4750 μg g-1, respectively. 238U had highest activity concentrations near the mine shaft, where the decay products214Pb and 210Pb had values of 235 and 180 Bq g-1, respectively. UBM extractions gave mean gastro-intestinal bioaccessibility factors (BAFs) for U and Pb in the waste solids of 0.05 and 0.03, respectively, whereas those for the soils were significantly higher at 0.24 and 0.17. The mean BAFs for the transient radionuclides, 214Pb and 210Pb, were similar to those for stable Pb implying that the stable and radioactive Pb isotopes were attached to similar sites on the particles. The doses arising from the ingestion of particulate 210Pb due to soil pica behaviour were in the range 0.2-65 and < 0.1-6.2 μSv day-1 for a 1-year old child or an adult (>17 years), respectively. The results suggest that the health risk posed by abandoned uranium mines, with waste rock and tailings, throughout the world should take account of the dose due to both bioaccessible radionuclides, as well as their stable counterparts.
Collapse
Affiliation(s)
- Michael Foulkes
- Plymouth University, School of Geography, Earth and Environmental Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| | - Geoffrey Millward
- Plymouth University, Consolidated Radio-isotope Facility, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| | - Samuel Henderson
- Plymouth University, School of Geography, Earth and Environmental Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - William Blake
- Plymouth University, School of Geography, Earth and Environmental Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
3
|
Pelfrêne A, Cave MR, Wragg J, Douay F. In Vitro Investigations of Human Bioaccessibility from Reference Materials Using Simulated Lung Fluids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E112. [PMID: 28125027 PMCID: PMC5334666 DOI: 10.3390/ijerph14020112] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
An investigation for assessing pulmonary bioaccessibility of metals from reference materials is presented using simulated lung fluids. The objective of this paper was to contribute to an enhanced understanding of airborne particulate matter and its toxic potential following inhalation. A large set of metallic elements (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) was investigated using three lung fluids (phosphate-buffered saline, Gamble's solution and artificial lysosomal fluid) on three standard reference materials representing different types of particle sources. Composition of the leaching solution and four solid-to-liquid (S/L) ratios were tested. The results showed that bioaccessibility was speciation- (i.e., distribution) and element-dependent, with percentages varying from 0.04% for Pb to 86.0% for Cd. The higher extraction of metallic elements was obtained with the artificial lysosomal fluid, in which a relative stability of bioaccessibility was observed in a large range of S/L ratios from 1/1000 to 1/10,000. For further investigations, it is suggested that this method be used to assess lung bioaccessibility of metals from smelter-impacted dusts.
Collapse
Affiliation(s)
- Aurélie Pelfrêne
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, Lille Cedex 59046, France.
| | - Mark R Cave
- British Geological Survey, Keyworth, Nottingham NG12 5GG, UK.
| | - Joanna Wragg
- British Geological Survey, Keyworth, Nottingham NG12 5GG, UK.
| | - Francis Douay
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, Lille Cedex 59046, France.
| |
Collapse
|
4
|
Träber SC, Li WB, Höllriegl V, Nebelung K, Michalke B, Rühm W, Oeh U. Calculation of internal dose from ingested soil-derived uranium in humans: Application of a new method. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:265-272. [PMID: 25980738 DOI: 10.1007/s00411-015-0602-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to determine the internal dose in humans after the ingestion of soil highly contaminated with uranium. Therefore, an in vitro solubility assay was performed to estimate the bioaccessibility of uranium for two types of soil. Based on the results, the corresponding bioavailabilities were assessed by using a recently published method. Finally, these bioavailability data were used together with the biokinetic model of uranium to assess the internal doses for a hypothetical but realistic scenario characterized by a daily ingestion of 10 mg of soil over 1 year. The investigated soil samples were from two former uranium mining sites of Germany with (238)U concentrations of about 460 and 550 mg/kg. For these soils, the bioavailabilities of (238)U were quantified as 0.18 and 0.28 % (geometric mean) with 2.5th percentiles of 0.02 and 0.03 % and 97.5th percentiles of 1.48 and 2.34 %, respectively. The corresponding calculated annual committed effective doses for the assumed scenario were 0.4 and 0.6 µSv (GM) with 2.5th percentiles of 0.2 and 0.3 µSv and 97.5th percentiles of 1.6 and 3.0 µSv, respectively. These annual committed effective doses are similar to those from natural uranium intake by food and drinking water, which is estimated to be 0.5 µSv. Based on the present experimental data and the selected ingestion scenario, the investigated soils-although highly contaminated with uranium-are not expected to pose any major health risk to humans related to radiation.
Collapse
Affiliation(s)
- S C Träber
- Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany,
| | | | | | | | | | | | | |
Collapse
|
5
|
Träber SC, Höllriegl V, Li WB, Czeslik U, Rühm W, Oeh U, Michalke B. Estimating the absorption of soil-derived uranium in humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14721-14727. [PMID: 25417915 DOI: 10.1021/es504171r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to improve the estimation of soil-derived uranium absorption in humans. For this purpose, an in vitro solubility assay was combined with a human study by using a specific edible soil low in uranium. The mean bioaccessibility of the soil-derived uranium, determined by the solubility assay in artificial gastrointestinal fluid, was found to be 7.7% with a standard deviation of 0.2%. The corresponding bioavailability of the soil-derived uranium in humans was assumed to be log-normal distributed with a geometric mean of 0.04% and a 95% confidence interval ranging from 0.0049% to 0.34%. Both results were used to calculate a factor, denoted as fA(sol), which describes the relation between the bioaccessibility and the bioavailability of soil-derived uranium. The geometric mean of fA(sol) was determined to be 0.53% with a 95% confidence interval ranging from 0.06% to 4.43%. Based on fA(sol), it is possible to estimate more realistic values on the bioavailability of uranium for highly uranium-contaminated soils in humans by just performing the applied solubility assay. The results of this study can be further used to obtain more reliable results on the internal dose assessment of ingested highly uranium-contaminated soils.
Collapse
Affiliation(s)
- Stephan C Träber
- Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Jovanovic SV, Pan P, Wong L. Bioaccessibility of uranium in soil samples from Port Hope, Ontario, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9012-9018. [PMID: 22852839 DOI: 10.1021/es3021217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Adequate assessment of human health risk of uranium contamination at hazardous waste sites, which is an important step in determining the cleanup strategy, is based on bioavailability data. Bioavailability of uranium from contaminated soil has not been properly determined yet. Bioaccessibility is an in vitro conservative estimate of bioavailability and is thus frequently used for site-specific risk assessment. Bioaccessibility of uranium was measured in 33 soil samples from the Port Hope area in Ontario, Canada, by the physiologically based extraction test (PBET). Higher bioaccessibility values in the gastric plus intestinal phase, 48.4% ± 16.8%, than in the gastric phase, 20.8% ± 11.7%, are very probably the result of more efficient extraction of uranium from soil by intestinal fluid rich in carbonate ions. The observed variability of measured bioaccessibility values is discussed in light of the results of scanning electron microscope examination of the soil samples. Uranium bioaccessibility values in both gastric (acidic) and gastric plus intestinal (neutral) phases are higher in soil samples with smaller uranium-bearing particles and lower in samples where the uranium-bearing particles are larger. We postulate that the most important reason for variability of measured bioaccessibility values in Port Hope soil samples may be the difference in particle size of uranium-bearing particles.
Collapse
Affiliation(s)
- Slobodan V Jovanovic
- Canadian Nuclear Safety Commission Laboratory, 3484 Limebank Road, Ottawa, Ontario, Canada K1V 1E1.
| | | | | |
Collapse
|
7
|
Jeambrun M, Pourcelot L, Mercat C, Boulet B, Loyen J, Cagnat X, Gauthier-Lafaye F. Study on transfers of uranium, thorium and decay products from grain, water and soil to chicken meat and egg contents. ACTA ACUST UNITED AC 2012; 14:2170-80. [DOI: 10.1039/c2em10994h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Höllriegl V, Li WB, Leopold K, Gerstmann U, Oeh U. Solubility of uranium and thorium from a healing earth in synthetic gut fluids: a case study for use in dose assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5794-5800. [PMID: 20832099 DOI: 10.1016/j.scitotenv.2010.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/30/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
The aim of this case study was to estimate the bioaccessibility of uranium ((238)U) and thorium ((232)Th) from a healing earth by analysing the solubility of these radionuclides in synthetic gastric and intestinal fluids. An easy applicable in vitro test system was used to investigate the fractional mobilization of the soil contaminants being potentially available for absorption under human in vivo conditions. These findings provided the basis for a prospective dose assessment. The solubility experiments were performed using two different in vitro digestion methods. The concentrations of (238)U and (232)Th in the solutions extracted from the soil were measured by inductively coupled plasma mass spectrometry (ICP-MS). The dissolved fractions in the synthetic gastrointestinal fluid ranged in average from 10.3% to 13.8% for (238)U and from 0.3% to 1.6% for (232)Th, respectively, depending on the digestion method. Subsequently, the committed effective doses from intake of (238)U and (232)Th after ingestion of the healing earth during 1 year were evaluated for adult persons. Thereby ingestion dose coefficients calculated as a function of bioaccessibility were used. The dose assessments ranged between 4.3 × 10(-7)-1.9 × 10(-6) Sv y(-1) for (238)U and 5.6 × 10(-7)-3.3 × 10(-6) Sv y(-1) for (232)Th, respectively. On the basis of the assumptions and estimations made, the present work indicates a relatively low radiation risk due to (238)U and (232)Th after internal exposure of the healing earth.
Collapse
Affiliation(s)
- Vera Höllriegl
- Department for Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
9
|
Estellita L, Santos A, Anjos R, Yoshimura E, Velasco H, da Silva A, Aguiar J. Analysis and risk estimates to workers of Brazilian granitic industries and sandblasters exposed to respirable crystalline silica and natural radionuclides. RADIAT MEAS 2010. [DOI: 10.1016/j.radmeas.2010.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|