1
|
Shamsabadi R, Baghani HR. DNA-damage RBE assessment for combined boron and gadolinium neutron capture therapy. J Appl Clin Med Phys 2024; 25:e14399. [PMID: 38767333 PMCID: PMC11244684 DOI: 10.1002/acm2.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Neutron capture therapy (NCT) by 10B and 157Gd agents is a unique irradiation-based method which can be used to treat brain tumors. Current study aims to quantitatively evaluate the relative biological effectiveness (RBE) and dose distributions during the combined BNCT and GdNCT modalities through a hybrid Monte Carlo (MC) simulation approach. METHODS Snyder head phantom as well as a cubic hypothetical tumor was at first modeled by Geant4 MC Code. Then, the energy spectra and dose distribution relevant to the released secondary particles during the combined Gd/BNCT were scored for different concentrations of 157Gd and 10B inside tumor volume. Finally, the scored energy spectra were imported to the MCDS code to estimate both RBESSB and RBEDSB values for different 157Gd concentrations. RESULTS The results showed that combined Gd/BNCT increases the fluence-averaged RBESSB values by about 1.7 times when 157Gd concentration increments from 0 to 2000 µg/g for both considered cell oxygen levels (pO2 = 10% and 100%). Besides, a reduction of about 26% was found for fluence-averaged RBEDSB values with an increment of 157Gd concentration in tumor volume. CONCLUSION From the results, it can be concluded that combined Gd/BNCT technique can improve tumor coverage with higher dose levels but in the expense of RBEDSB reduction which can affect the clinical efficacy of the NCT technique.
Collapse
Affiliation(s)
- Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
2
|
Hattori Y, Andoh T, Kawabata S, Hu N, Michiue H, Nakamura H, Nomoto T, Suzuki M, Takata T, Tanaka H, Watanabe T, Ono K. Proposal of recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2023; 64:859-869. [PMID: 37717596 PMCID: PMC10665309 DOI: 10.1093/jrr/rrad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
Recently, boron neutron capture therapy (BNCT) has been attracting attention as a minimally invasive cancer treatment. In 2020, the accelerator-based BNCT with L-BPA (Borofalan) as its D-sorbitol complex (Steboronine®) for head and neck cancers was approved by Pharmaceutical and Medical Devices Agency for the first time in the world. As accelerator-based neutron generation techniques are being developed in various countries, the development of novel tumor-selective boron agents is becoming increasingly important and desired. The Japanese Society of Neutron Capture Therapy believes it is necessary to propose standard evaluation protocols at each stage in the development of boron agents for BNCT. This review summarizes recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for BNCT based on our experience with L-BPA approval.
Collapse
Affiliation(s)
- Yoshihide Hattori
- Research Center for BNCT, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai 599-8531, Japan
| | - Tooru Andoh
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| |
Collapse
|
3
|
In vivo evaluation of the effects of combined boron and gadolinium neutron capture therapy in mouse models. Sci Rep 2022; 12:13360. [PMID: 35922534 PMCID: PMC9349192 DOI: 10.1038/s41598-022-17610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
While boron neutron capture therapy (BNCT) depends primarily on the short flight range of the alpha particles emitted by the boron neutron capture reaction, gadolinium neutron capture therapy (GdNCT) mainly relies on gamma rays and Auger electrons released by the gadolinium neutron capture reaction. BNCT and GdNCT can be complementary in tumor therapy. Here, we studied the combined effects of BNCT and GdNCT when boron and gadolinium compounds were co-injected, followed by thermal neutron irradiation, and compared these effects with those of the single therapies. In cytotoxicity studies, some additive effects (32‒43%) were observed when CT26 cells were treated with both boron- and gadolinium-encapsulated PEGylated liposomes (B- and Gd-liposomes) compared to the single treatments. The tumor-suppressive effect was greater when BNCT was followed by GdNCT at an interval of 10 days rather than vice versa. However, tumor suppression with co-injection of B- and Gd-liposomes into tumor-bearing mice followed by neutron beam irradiation was comparable to that observed with Gd-liposome-only treatment but lower than B-liposome-only injection. No additive effect was observed with the combination of BNCT and GdNCT, which could be due to the shielding effect of gadolinium against thermal neutrons because of its overwhelmingly large thermal neutron cross section.
Collapse
|
4
|
Ho SL, Yue H, Tegafaw T, Ahmad MY, Liu S, Nam SW, Chang Y, Lee GH. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS OMEGA 2022; 7:2533-2553. [PMID: 35097254 PMCID: PMC8793081 DOI: 10.1021/acsomega.1c06603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 05/03/2023]
Abstract
157Gd (natural abundance = 15.7%) has the highest thermal neutron capture cross section (σ) of 254,000 barns (1 barn = 10-28 m2) among stable (nonradioactive) isotopes in the periodic table. Another stable isotope, 155Gd (natural abundance = 14.8%), also has a high σ value of 60,700 barns. These σ values are higher than that of 10B (3840 barns, natural abundance = 19.9%), which is currently used as a neutron-absorbing isotope for boron neutron capture therapy agents. Energetic particles such as electrons and γ-rays emitted from Gd-isotopes after neutron beam absorption kill cancer cells by damaging DNAs inside cancer-cell nuclei without damaging normal cells if Gd-chemicals are positioned in cancer cells. To date, various Gd-chemicals such as commercial Gd-chelates used as magnetic resonance imaging contrast agents, modified Gd-chelates, nanocomposites containing Gd-chelates, fullerenes containing Gd, and solid-state Gd-nanoparticles have been investigated as gadolinium neutron capture therapy (GdNCT) agents. All GdNCT agents had exhibited cancer-cell killing effects, and the degree of the effects depended on the GdNCT agents used. This confirms that GdNCT is a promising cancer therapeutic technique. However, the commercial Gd-chelates were observed to be inadequate in clinical use because of their low accumulation in cancer cells due to their extracellular and noncancer targeting properties and rapid excretion. The other GdNCT agents exhibited higher accumulation in cancer cells, compared to Gd-chelates; consequently, they demonstrated higher cancer-cell killing effects. However, they still displayed limitations such as poor specificity to cancer cells. Therefore, continuous efforts should be made to synthesize GdNCT agents suitable in clinical applications. Herein, the principle of GdNCT, current status of GdNCT agents, and general design strategy for GdNCT agents in clinical use are discussed and reviewed.
Collapse
Affiliation(s)
- Son Long Ho
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Huan Yue
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Tirusew Tegafaw
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Mohammad Yaseen Ahmad
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Shuwen Liu
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Sung-Wook Nam
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Yongmin Chang
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Gang Ho Lee
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| |
Collapse
|
5
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
6
|
Calabrese G, Daou A, Barbu E, Tsibouklis J. Towards carborane-functionalised structures for the treatment of brain cancer. Drug Discov Today 2017; 23:63-75. [PMID: 28886331 DOI: 10.1016/j.drudis.2017.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/03/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a promising targeted chemoradiotherapeutic technique for the management of invasive brain tumors, such as glioblastoma multiforme (GBM). A prerequisite for effective BNCT is the selective targeting of tumour cells with 10B-rich therapeutic moieties. To this end, polyhedral boranes, especially carboranes, have received considerable attention because they combine a high boron content with relative low toxicity and metabolic inertness. Here, we review progress in the molecular design of recently investigated carborane derivatives in light of the widely accepted performance requirements for effective BNCT.
Collapse
Affiliation(s)
- Gianpiero Calabrese
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK.
| | - Anis Daou
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
7
|
Alberti D, Protti N, Franck M, Stefania R, Bortolussi S, Altieri S, Deagostino A, Aime S, Geninatti Crich S. Theranostic Nanoparticles Loaded with Imaging Probes and Rubrocurcumin for Combined Cancer Therapy by Folate Receptor Targeting. ChemMedChem 2017; 12:502-509. [PMID: 28217982 DOI: 10.1002/cmdc.201700039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/14/2017] [Indexed: 12/11/2022]
Abstract
The combination of different therapeutic modalities is a promising option to combat the recurrence of tumors. In this study, polylactic and polyglycolic acid nanoparticles were used for the simultaneous delivery of a boron-curcumin complex (RbCur) and an amphiphilic gadolinium complex into tumor cells with the aim of performing boron and gadolinium neutron capture therapy (NCT) in conjunction with the additional antiproliferative effects of curcumin. Furthermore, the use of Gd complexes allows magnetic resonance imaging (MRI) assessment of the amount of B and Gd internalized by tumor cells. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were targeted to ovarian cancer (IGROV-1) cells through folate receptors, by including in the formulation a PEGylated phospholipid functionalized with the folate moiety. NCT was performed on IGROV-1 cells internalizing 6.4 and 78.6 μg g-1 of 10 B and 157 Gd, respectively. The synergic action of neutron treatment and curcumin cytotoxicity was shown to result in a significant therapeutic improvement.
Collapse
Affiliation(s)
- Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Nicoletta Protti
- Department of Physics, University of Pavia, via Bassi 6, 27100, Pavia, Italy.,Nuclear Physics National Institute (INFN), University of Pavia, via Bassi 6, 27100, Pavia, Italy
| | - Morgane Franck
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Silva Bortolussi
- Department of Physics, University of Pavia, via Bassi 6, 27100, Pavia, Italy.,Nuclear Physics National Institute (INFN), University of Pavia, via Bassi 6, 27100, Pavia, Italy
| | - Saverio Altieri
- Department of Physics, University of Pavia, via Bassi 6, 27100, Pavia, Italy.,Nuclear Physics National Institute (INFN), University of Pavia, via Bassi 6, 27100, Pavia, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Torino, Italy
| |
Collapse
|
8
|
Kostiv U, Rajsiglová L, Luptáková D, Pluháček T, Vannucci L, Havlíček V, Engstová H, Jirák D, Šlouf M, Makovicky P, Sedláček R, Horák D. Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+ nanoparticles in mouse models. RSC Adv 2017. [DOI: 10.1039/c7ra08712h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Upconversion magnetic nanoparticles emit visible light after NIR irradiation. Gd renders them with MRI contrast. Localization of the particles is excellently visible in blood vasculature of tumor bearing mice after intravenous administration.
Collapse
|
9
|
Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016; 8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.
Collapse
|