Ferreira-Lucena LR, Xavier AISF, Netto AM, Magnata SDSLP, Siqueira Lima G, Amaral A. Extending culture time to improve Mitotic Index for cytogenetic dosimetry.
Int J Radiat Biol 2024;
100:1029-1040. [PMID:
38787719 DOI:
10.1080/09553002.2024.2356545]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE
To analyze the effects of extending lymphocyte cultivation time on the Mitotic Index, frequency of first-division cells, and dose estimation after irradiating blood samples with different doses of radiation.
MATERIALS AND METHODS
Blood samples from two healthy male volunteers were separately irradiated with three doses (3, 5, and 6 Gy) using a 60Co gamma source (average dose rate: 1.48 kGy.h-1) and cultivated in vitro for conventional (48 h) and extended (56, 68, and 72 h) amounts of time. Colcemid (0.01 µg.mL-1) was added at the beginning of the culture period. Cells were fixed, stained with fluorescence plus Giemsa (FPG), and analyzed under a light microscope. The effects of prolonged culture duration on the Mitotic Index (MI), frequency of first-division cells (M1 cells), and the First-Division Mitotic Index (FDMI) were investigated. The estimation of delivered doses was conducted using a conventional 48h-culture calibration curve.
RESULTS
Overall, cells presented higher MI (up to 12-fold) with the extension of culture, while higher radiation doses led to lower MI values (up to 80% reduction at 48 h). Cells irradiated with higher doses (5 and 6 Gy) had the most significant increase (5- to 12-fold) of MI as the cultivation was prolonged. The frequency of M1 cells decreased with the prolongation of culture for all doses (up to 75% reduction), while irradiated cells presented higher frequencies of M1 cells than non-irradiated ones. FDMI increased for all irradiated cultures but most markedly in those irradiated with higher doses (up to 10-fold). The conventional 48h-culture calibration curve proved adequate for assessing the delivered dose based on dicentric frequency following a 72-hour culture.
CONCLUSION
Compared to the conventional 48-hour protocol, extending the culture length to 72 hours significantly increased the Mitotic Index and the number of first-division metaphases of irradiated lymphocytes, providing slides with a better scorable metaphase density. Extending the culture time to 72 hours, combined with FPG staining to score exclusively first-division metaphases, improved the counting of dicentric chromosomes. The methodology presented and discussed in this study can be a powerful tool for dicentric-based biodosimetry, especially when exposure to high radiation doses is involved.
Collapse