1
|
Del Vecchio M, Bontemps B, Lance F, Gannerie A, Sipp F, Albertini D, Cassani CM, Chatard B, Dupin M, Lachaux JP. Introducing HiBoP: a Unity-based visualization software for large iEEG datasets. J Neurosci Methods 2024; 409:110179. [PMID: 38823595 DOI: 10.1016/j.jneumeth.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Intracranial EEG data offer a unique spatio-temporal precision to investigate human brain functions. Large datasets have become recently accessible thanks to new iEEG data-sharing practices and tighter collaboration with clinicians. Yet, the complexity of such datasets poses new challenges, especially regarding the visualization and anatomical display of iEEG. NEW METHOD We introduce HiBoP, a multi-modal visualization software specifically designed for large groups of patients and multiple experiments. Its main features include the dynamic display of iEEG responses induced by tasks/stimulations, the definition of Regions and electrodes Of Interest, and the shift between group-level and individual-level 3D anatomo-functional data. RESULTS We provide a use-case with data from 36 patients to reveal the global cortical dynamics following tactile stimulation. We used HiBoP to visualize high-gamma responses [50-150 Hz], and define three major response components in primary somatosensory and premotor cortices and parietal operculum. COMPARISON WITH EXISTING METHODS(S) Several iEEG softwares are now publicly available with outstanding analysis features. Yet, most were developed in languages (Python/Matlab) chosen to facilitate the inclusion of new analysis by users, rather than the quality of the visualization. HiBoP represents a visualization tool developed with videogame standards (Unity/C#), and performs detailed anatomical analysis rapidly, across multiple conditions, patients, and modalities with an easy export toward third-party softwares. CONCLUSION HiBoP provides a user-friendly environment that greatly facilitates the exploration of large iEEG datasets, and helps users decipher subtle structure/function relationships.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| | - Benjamin Bontemps
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Florian Lance
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Adrien Gannerie
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Florian Sipp
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Davide Albertini
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39, Parma 43125, Italy
| | - Chiara Maria Cassani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy; Department of School of Advanced Studies, University of Camerino, Italy
| | - Benoit Chatard
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Maryne Dupin
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France.
| |
Collapse
|
2
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|