1
|
Turrini S, Fiori F, Bevacqua N, Saracini C, Lucero B, Candidi M, Avenanti A. Spike-timing-dependent plasticity induction reveals dissociable supplementary- and premotor-motor pathways to automatic imitation. Proc Natl Acad Sci U S A 2024; 121:e2404925121. [PMID: 38917006 PMCID: PMC11228524 DOI: 10.1073/pnas.2404925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
Humans tend to spontaneously imitate others' behavior, even when detrimental to the task at hand. The action observation network (AON) is consistently recruited during imitative tasks. However, whether automatic imitation is mediated by cortico-cortical projections from AON regions to the primary motor cortex (M1) remains speculative. Similarly, the potentially dissociable role of AON-to-M1 pathways involving the ventral premotor cortex (PMv) or supplementary motor area (SMA) in automatic imitation is unclear. Here, we used cortico-cortical paired associative stimulation (ccPAS) to enhance or hinder effective connectivity in PMv-to-M1 and SMA-to-M1 pathways via Hebbian spike-timing-dependent plasticity (STDP) to test their functional relevance to automatic and voluntary motor imitation. ccPAS affected behavior under competition between task rules and prepotent visuomotor associations underpinning automatic imitation. Critically, we found dissociable effects of manipulating the strength of the two pathways. While strengthening PMv-to-M1 projections enhanced automatic imitation, weakening them hindered it. On the other hand, strengthening SMA-to-M1 projections reduced automatic imitation but also reduced interference from task-irrelevant cues during voluntary imitation. Our study demonstrates that driving Hebbian STDP in AON-to-M1 projections induces opposite effects on automatic imitation that depend on the targeted pathway. Our results provide direct causal evidence of the functional role of PMv-to-M1 projections for automatic imitation, seemingly involved in spontaneously mirroring observed actions and facilitating the tendency to imitate them. Moreover, our findings support the notion that SMA exerts an opposite gating function, controlling M1 to prevent overt motor behavior when inadequate to the context.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
| | - Francesca Fiori
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, 00128Roma, Italy
| | - Naomi Bevacqua
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185Roma, Italy
| | - Chiara Saracini
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| | - Matteo Candidi
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185Roma, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| |
Collapse
|
2
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
4
|
Tagliaferri M, Giampiccolo D, Parmigiani S, Avesani P, Cattaneo L. Connectivity by the Frontal Aslant Tract (FAT) Explains Local Functional Specialization of the Superior and Inferior Frontal Gyri in Humans When Choosing Predictive over Reactive Strategies: A Tractography-Guided TMS Study. J Neurosci 2023; 43:6920-6929. [PMID: 37657931 PMCID: PMC10573747 DOI: 10.1523/jneurosci.0406-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
Predictive and reactive behaviors represent two mutually exclusive strategies in a sensorimotor task. Predictive behavior consists in internally estimating timing and features of a target stimulus and relies on a cortical medial frontal system [superior frontal gyrus (SFG)]. Reactive behavior consists in waiting for actual perception of the target stimulus and relies on the lateral frontal cortex [inferior frontal gyrus (IFG)]. We investigated whether SFG-IFG connections by the frontal aslant tract (FAT) can mediate predictive/reactive interactions. In 19 healthy human volunteers, we applied online transcranial magnetic stimulation (TMS) to six spots along the medial and lateral terminations of the FAT, during the set period of a delayed reaction task. Such scenario can be solved using either predictive or reactive strategies. TMS increased the propensity toward reactive behavior if applied to a specific portion of the IFG and increased predictive behavior when applied to a specific SFG spot. The two active spots in the SFG and IFG were directly connected by a sub-bundle of FAT fibers as indicated by diffusion-weighted imaging (DWI) tractography. Since FAT connectivity identifies two distant cortical nodes with opposite functions, we propose that the FAT mediates mutually inhibitory interactions between SFG and IFG to implement a "winner takes all" decisional process. We hypothesize such role of the FAT to be domain-general, whenever competition occurs between internal predictive and external reactive behaviors. Finally, we also show that anatomic connectivity is a powerful factor to explain and predict the spatial distribution of brain stimulation effects.SIGNIFICANCE STATEMENT We interact with sensory cues adopting two main mutually-exclusive strategies: (1) trying to anticipate the occurrence of the cue or (2) waiting for the GO-signal to be manifest and react to it. Here, we showed, by using noninvasive brain stimulation [transcranial magnetic stimulation (TMS)], that two specific cortical regions in the superior frontal gyrus (SFG) and the inferior frontal gyrus (IFG) have opposite roles in facilitating a predictive or a reactive strategy. Importantly these two very distant regions but with highly interconnected functions are specifically connected by a small white matter bundle, which mediates the direct competition and exclusiveness between predictive and reactive strategies. More generally, implementing anatomic connectivity in TMS studies strongly reduces spatial noise.
Collapse
Affiliation(s)
- Marco Tagliaferri
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Rovereto 38068, Italy
| | - Davide Giampiccolo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona 37124, Italy
| | - Sara Parmigiani
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco," Università degli Studi di Milano, Milano 20157, Italy
| | - Paolo Avesani
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Rovereto 38068, Italy
- Center for Digital Health & Well Being, Neuroinformatics Laboratory, Fondazione Bruno Kessler, Trento 38123, Italy
| | - Luigi Cattaneo
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Rovereto 38068, Italy
- Centro Interdipartimentale di Scienze Mediche (CISMed), University of Trento, Trento 38122, Italy
| |
Collapse
|
5
|
Guidali G, Picardi M, Franca M, Caronni A, Bolognini N. The social relevance and the temporal constraints of motor resonance in humans. Sci Rep 2023; 13:15933. [PMID: 37741884 PMCID: PMC10517949 DOI: 10.1038/s41598-023-43227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
In humans, motor resonance effects can be tracked by measuring the enhancement of corticospinal excitability by action observation. Uncovering factors driving motor resonance is crucial for optimizing action observation paradigms in experimental and clinical settings. In the present study, we deepen motor resonance properties for grasping movements. Thirty-five healthy subjects underwent an action observation task presenting right-hand grasping movements differing from their action goal. Single-pulse transcranial magnetic stimulation was applied over the left primary motor cortex at 100, 200, or 300 ms from the onset of the visual stimulus depicting the action. Motor-evoked potentials were recorded from four muscles of the right hand and forearm. Results show a muscle-specific motor resonance effect at 200 ms after movement but selectively for observing a socially relevant grasp towards another human being. This effect correlates with observers' emotional empathy scores, and it was followed by inhibition of motor resonance at 300 ms post-stimulus onset. No motor resonance facilitation emerged while observing intransitive hand movement or object grasping. This evidence highlights the social side of motor resonance and its dependency on temporal factors.
Collapse
Affiliation(s)
- Giacomo Guidali
- Department of Psychology & NeuroMI-Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy.
| | - Michela Picardi
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurorehabilitation Sciences, Casa di cura Igea, Milan, Italy
| | - Maria Franca
- Department of Psychology & NeuroMI-Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Caronni
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI-Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy.
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
6
|
Andò A, Garbarini F, Giromini L, Salatino A, Zennaro A, Ricci R, Fossataro C. Can static Rorschach stimuli perceived as in motion affect corticospinal excitability? PLoS One 2023; 18:e0287866. [PMID: 37440495 PMCID: PMC10343040 DOI: 10.1371/journal.pone.0287866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
It has been proposed that seeing human movement or activity (M), while trying to say what the static Rorschach inkblot design look like, is accompanied by Mirror Neuron System (MNS)-like mirroring activity in the brain. The present study aimed to investigate whether the Rorschach cards eliciting M responses could affect the excitability of the motor cortex by recording motor evoked potentials (MEPs) elicited by single-pulse TMS over the primary motor cortex (M1). We hypothesized that Rorschach inkblot stimuli triggering the viewer's experience of human movement would increase corticospinal excitability. Twenty-one healthy volunteers (15 women) participated in the preliminary experiment, while another different sample of twenty-two healthy participants (11 women) ranging in age from 21 to 41 years was enrolled in the main experiment. Our results showed that the Rorschach cards known to be associated with a high number of M responses elicited human movement both as automatic internal sensations and as verbal production of responses involving human movement. However, contrary to our hypothesis, the reported internal feeling of human movement had no corresponding physiological counterpart, as the amplitude of MEPs did not increase. Possible and innovative explanations for the involvement of bottom-up and top-down processes were provided.
Collapse
Affiliation(s)
- Agata Andò
- Department of Psychology, University of Turin, Turin, Italy
| | | | | | - Adriana Salatino
- Department of Psychology, University of Turin, Turin, Italy
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
7
|
Abstract
Ten years ago, Perspectives in Psychological Science published the Mirror Neuron Forum, in which authors debated the role of mirror neurons in action understanding, speech, imitation, and autism and asked whether mirror neurons are acquired through visual-motor learning. Subsequent research on these themes has made significant advances, which should encourage further, more systematic research. For action understanding, multivoxel pattern analysis, patient studies, and brain stimulation suggest that mirror-neuron brain areas contribute to low-level processing of observed actions (e.g., distinguishing types of grip) but not to high-level action interpretation (e.g., inferring actors' intentions). In the area of speech perception, although it remains unclear whether mirror neurons play a specific, causal role in speech perception, there is compelling evidence for the involvement of the motor system in the discrimination of speech in perceptually noisy conditions. For imitation, there is strong evidence from patient, brain-stimulation, and brain-imaging studies that mirror-neuron brain areas play a causal role in copying of body movement topography. In the area of autism, studies using behavioral and neurological measures have tried and failed to find evidence supporting the "broken-mirror theory" of autism. Furthermore, research on the origin of mirror neurons has confirmed the importance of domain-general visual-motor associative learning rather than canalized visual-motor learning, or motor learning alone.
Collapse
Affiliation(s)
- Cecilia Heyes
- All Souls College, University of Oxford
- Department of Experimental Psychology, University of Oxford
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London
| |
Collapse
|
8
|
Kislinger L. Photographs of Actions: What Makes Them Special Cues to Social Perception. Brain Sci 2021; 11:brainsci11111382. [PMID: 34827381 PMCID: PMC8615998 DOI: 10.3390/brainsci11111382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
I have reviewed studies on neural responses to pictured actions in the action observation network (AON) and the cognitive functions of these responses. Based on this review, I have analyzed the specific representational characteristics of action photographs. There has been consensus that AON responses provide viewers with knowledge of observed or pictured actions, but there has been controversy about the properties of this knowledge. Is this knowledge causally provided by AON activities or is it dependent on conceptual processing? What elements of actions does it refer to, and how generalized or specific is it? The answers to these questions have come from studies that used transcranial magnetic stimulation (TMS) to stimulate motor or somatosensory cortices. In conjunction with electromyography (EMG), TMS allows researchers to examine changes of the excitability in the corticospinal tract and muscles of people viewing pictured actions. The timing of these changes and muscle specificity enable inferences to be drawn about the cognitive products of processing pictured actions in the AON. Based on a review of studies using TMS and other neuroscience methods, I have proposed a novel hypothetical account that describes the characteristics of action photographs that make them effective cues to social perception. This account includes predictions that can be tested experimentally.
Collapse
|
9
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
10
|
Simultaneous Recording of Motor Evoked Potentials in Hand, Wrist and Arm Muscles to Assess Corticospinal Divergence. Brain Topogr 2021; 34:415-429. [PMID: 33945041 DOI: 10.1007/s10548-021-00845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to further develop methods to assess corticospinal divergence and muscle coupling using transcranial magnetic stimulation (TMS). Ten healthy right-handed adults participated (7 females, age 34.0 ± 12.9 years). Monophasic single pulses were delivered to 14 sites over the right primary motor cortex at 40, 60, 80 and 100% of maximum stimulator output (MSO), using MRI-based neuronavigation. Motor evoked potentials (MEPs) were recorded simultaneously from 9 muscles of the contralateral hand, wrist and arm. For each intensity, corticospinal divergence was quantified by the average number of muscles that responded to TMS per cortical site, coactivation across muscle pairs as reflected by overlap of cortical representations, and correlation of MEP amplitudes across muscle pairs. TMS to each muscle's most responsive site elicited submaximal MEPs in most other muscles. The number of responsive muscles per cortical site and the extent of coactivation increased with increasing intensity (ANOVA, p < 0.001). In contrast, correlations of MEP amplitudes did not differ across the 60, 80 and 100% MSO intensities (ANOVA, p = 0.34), but did differ across muscle pairs (ANOVA, p < 0.001). Post hoc analysis identified 4 sets of muscle pairs (Tukey homogenous subsets, p < 0.05). Correlations were highest for pairs involving two hand muscles and lowest for pairs that included an upper arm muscle. Correlation of MEP amplitudes may quantify varying levels of muscle coupling. In future studies, this approach may be a biomarker to reveal altered coupling induced by neural injury, neural repair and/or motor learning.
Collapse
|
11
|
Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study. Brain Sci 2021; 11:brainsci11050534. [PMID: 33923217 PMCID: PMC8146001 DOI: 10.3390/brainsci11050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Delayed motor tasks require timely interaction between immobility and action. The neural substrates of these processes probably reside in the premotor and motor circuits; however, fine-grained anatomical/functional information is still lacking. Participants performed a delayed simple reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses were given with lip movements. During the SET-period, we performed a systematic dense-mapping of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation (TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline. Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM. TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order rostral component is involved in setting action strategies and a caudal, lower-order, part is probably involved in the inhibitory control of motor output.
Collapse
|
12
|
Cretu AL, Ruddy KL, Post A, Wenderoth N. Muscle-specific modulation of indirect inputs to primary motor cortex during action observation. Exp Brain Res 2020; 238:1735-1744. [PMID: 32266444 DOI: 10.1007/s00221-020-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 01/22/2023]
Abstract
Single-pulse transcranial magnetic stimulation (spTMS) studies report that movement observation facilitates corticospinal excitability in primary motor cortex (M1) in a muscle-specific manner. However, motor evoked potentials (MEPs) elicited by spTMS are known to reflect the summation of several descending volleys in corticospinal neurons which are evoked via mono- and polysynaptic inputs (so-called indirect waves or I-waves). It is unclear which of these components contribute to the muscle-specific modulation of M1 during action observation. The interactions between different I-waves are reflected in the facilitatory peaks elicited with a short-intracortical facilitation (SICF) protocol when two pulses are sent to M1 at precise intervals (i.e., 1.3, 2.5 or 4.1 ms). Here, we explored the modulation of early and late SICF peaks during action observation by measuring highly specific MEP amplitude changes measured in two muscles (index, FDI and little finger, ADM) while participants observed two different actions (precision and whole-hand grip). Our results demonstrate that both early (1.3 ms) and late (2.5 and 4.1 ms) SICF peaks are modulated in the context of movement observation. However, only the second peak (ISI 2.5 ms) was significantly associated with the muscle-specific modulation of corticospinal excitability as measured with spTMS. This late SICF peak is believed to reflect the activity cortico-cortical pathways involved in the facilitation of muscle-specific representations in M1. Thus, our findings suggest that movement observation leads to widespread activation of different neural circuits within M1, including those mediating cortico-cortical communication.
Collapse
Affiliation(s)
- Andreea Loredana Cretu
- Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| | - Kathy L Ruddy
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Alain Post
- Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Science and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Cuadros Z, Hurtado E, Cornejo C. Measuring Dynamics of Infant-Adult Synchrony Through Mocap. Front Psychol 2019; 10:2839. [PMID: 31920869 PMCID: PMC6930835 DOI: 10.3389/fpsyg.2019.02839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
The temporal dynamics of parent-infant synchrony have been well documented. In recent years, the introduction of more accurate technologies for tracking movements has allowed the distinction of different morphological patterns of dyadic coordination. However, the potential of these technologies to explore infant-adult synchrony has not yet been explored. In the present study, we examined the temporal, spatial, and morphological synchrony patterns of infant-unknown adult pairs participating in a storytime session by a motion capture system (mocap). We find low but significant correlation levels of body synchrony between infants and unknown adults. This synchronized coactivity adopted two differentiated forms: mirror-like and anatomical. While the infants' movements mirrored those of the adults with a lag (0.9 s), the adults' reactions to the infants were anatomical with delay (0.4 s). This evidence could contribute novel insights to rethink synchrony and its measurement.
Collapse
Affiliation(s)
| | | | - Carlos Cornejo
- Laboratorio de Lenguaje Interacción y Fenomenología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Cole EJ, Barraclough NE. Timing of mirror system activation when inferring the intentions of others. Brain Res 2018; 1700:109-117. [DOI: 10.1016/j.brainres.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
|
15
|
Cornejo C, Hurtado E, Cuadros Z, Torres-Araneda A, Paredes J, Olivares H, Carré D, Robledo JP. Dynamics of Simultaneous and Imitative Bodily Coordination in Trust and Distrust. Front Psychol 2018; 9:1546. [PMID: 30210391 PMCID: PMC6121516 DOI: 10.3389/fpsyg.2018.01546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/03/2018] [Indexed: 01/15/2023] Open
Abstract
Body synchronization between interacting people involves coordinative movements in time, space and form. The introduction of newer technologies for automated video analysis and motion tracking has considerably improved the accurate measurement of coordination, particularly in temporal and spatial terms. However, the form of interpersonal coordination has been less explored. In the present study we address this gap by exploring the effect of trust on temporal and morphological patterns of interpersonal coordination. We adapted an optical motion-capture system to record spontaneous body movements in pairs of individuals engaged in natural conversations. We conducted two experiments in which we manipulated trust through a breach of expectancy (Study 1: 10 trustful and 10 distrustful participants) and friendship (Study 2: 20 dyads of friends and 20 dyads of strangers). In Study 1, results show the participants' strong, early mirror-like coordination in response to the confederates' breach of trust. In Study 2, imitative coordination tended to be more pronounced in pairs of friends than in pairs of non-friends. Overall, our results show not only that listeners move in reaction to speakers, but also that speakers react to listeners with a chain of dynamic coordination patterns affected by the immediate disposition of, and long-term relationship with, their interlocutors.
Collapse
Affiliation(s)
- Carlos Cornejo
- Laboratorio de Lenguaje Interacción y Fenomenología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Hurtado
- Laboratorio de Lenguaje Interacción y Fenomenología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zamara Cuadros
- Laboratorio de Lenguaje Interacción y Fenomenología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Torres-Araneda
- Laboratorio de Lenguaje Interacción y Fenomenología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Paredes
- Laboratorio de Lenguaje Interacción y Fenomenología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Himmbler Olivares
- Departamento de Psicología, Universidad de Concepción, Concepción, Chile
| | - David Carré
- Carrera de Psicología, Universidad Arturo Prat, Iquique, Chile
| | - Juan P Robledo
- Centre for Music and Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Rizzolatti G, Fabbri‐Destro M, Caruana F, Avanzini P. System neuroscience: Past, present, and future. CNS Neurosci Ther 2018; 24:685-693. [PMID: 29924477 PMCID: PMC6490004 DOI: 10.1111/cns.12997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
In this review, we discuss first the anatomical and lesion studies that allowed the localization of fundamental functions in the cerebral cortex of primates including humans. Subsequently, we argue that the years from the end of the Second World War until the end of the last century represented the "golden age" of system neuroscience. In this period, the mechanisms-not only the localization-underlying sensory, and in particular visual functions were described, followed by those underlying cognitive functions and housed in temporal, parietal, and premotor areas. At the end of the last century, brain imaging techniques were developed that allowed the assessment of the functions of different cortical areas in a more precise and sophisticated way. However, brain imaging tells little about the neural mechanisms underlying functions. Furthermore, the brain imaging suffers from 3 major problems: time is absent, the data are merely correlative and the testing is often not ecological. We conclude our review discussing the possibility that these pitfalls might be overcome by using intracortical recordings (eg stereo-EEG), which have millisecond time resolution, allow direct electrical stimulation of specific sites, and finally enable to study patients while freely moving.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Istituto di NeuroscienzeConsiglio Nazionale delle RicercheParmaItaly
- Dipartimento di Medicina e ChirurgiaUniversità degli Studi di ParmaParmaItaly
| | | | - Fausto Caruana
- Dipartimento di Medicina e ChirurgiaUniversità degli Studi di ParmaParmaItaly
| | - Pietro Avanzini
- Istituto di NeuroscienzeConsiglio Nazionale delle RicercheParmaItaly
| |
Collapse
|
17
|
Amoruso L, Finisguerra A, Urgesi C. Contextualizing action observation in the predictive brain: Causal contributions of prefrontal and middle temporal areas. Neuroimage 2018; 177:68-78. [DOI: 10.1016/j.neuroimage.2018.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/27/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022] Open
|
18
|
Craighero L, Mele S. Equal kinematics and visual context but different purposes: Observer's moral rules modulate motor resonance. Cortex 2018; 104:1-11. [DOI: 10.1016/j.cortex.2018.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
19
|
Ticini LF, Schütz-Bosbach S, Waszak F. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS. Soc Cogn Affect Neurosci 2018; 12:1748-1757. [PMID: 29036454 PMCID: PMC5691549 DOI: 10.1093/scan/nsx106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 11/14/2022] Open
Abstract
To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition.
Collapse
Affiliation(s)
- Luca F Ticini
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | | | | |
Collapse
|
20
|
Cardellicchio P, Hilt PM, Olivier E, Fadiga L, D'Ausilio A. Early modulation of intra-cortical inhibition during the observation of action mistakes. Sci Rep 2018; 8:1784. [PMID: 29379086 PMCID: PMC5788976 DOI: 10.1038/s41598-018-20245-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/12/2018] [Indexed: 11/09/2022] Open
Abstract
Errors while performing an action are fundamental for learning. During interaction others' errors must be monitored and taken into account to allow joint action coordination and imitation learning. This monitoring relies on an action observation network (AON) mainly based on parietofrontal recurrent circuits. Although different studies suggest that inappropriate actions may rapidly be inhibited during execution, little is known about the modulation of the AON when an action misstep is shown. Here we used single and paired pulse transcranial magnetic stimulation to assess corticospinal excitability, intracortical facilitation and intracortical inhibition at different time intervals (120, 180, 240 ms) after the visual presentation of a motor execution error. Results show a specific and early (120 ms) decrease of intracortical inhibition likely because of a significant mismatch between the observed erroneous action and observer's expectations. Indeed, as proposed by the top-down predictive framework, the motor system may be involved in the generation of these error signals and our data show that this mechanism could rely on the early decrease of intracortical inhibition within the corticomotor system.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, Ferrara, Italy.
| | - Pauline M Hilt
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, Ferrara, Italy
| | - Etienne Olivier
- Institute of Neuroscience, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, Ferrara, Italy
- Section of Human Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, Ferrara, Italy
- Section of Human Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, Ferrara, Italy
| |
Collapse
|
21
|
Beaton LE, Azma S, Marinkovic K. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge. PLoS One 2018; 13:e0191200. [PMID: 29329355 PMCID: PMC5766228 DOI: 10.1371/journal.pone.0191200] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/30/2017] [Indexed: 01/22/2023] Open
Abstract
Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI) and response levels (RI). Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15–25 Hz) frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4–7 Hz) were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored and regulated by the prefrontal cognitive control processes under conflict. They further confirm that the regulative top-down functions are particularly vulnerable to alcohol intoxication.
Collapse
Affiliation(s)
- Lauren E. Beaton
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Sheeva Azma
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, San Diego, California, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Radiology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Action observation effects reflect the modular organization of the human motor system. Cortex 2017; 95:104-118. [PMID: 28866300 DOI: 10.1016/j.cortex.2017.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
Action observation, similarly to action execution, facilitates the observer's motor system and Transcranial Magnetic Stimulation (TMS) has been instrumental in exploring the nature of these motor activities. However, contradictory findings question some of the fundamental assumptions regarding the neural computations run by the Action Observation Network (AON). To better understand this issue, we delivered TMS over the observers' motor cortex at two timings of two reaching-grasping actions (precision vs power grip) and we recorded Motor-Evoked Potentials (4 hand/arm muscles; MEPs). At the same time, we also recorded whole-hand TMS Evoked Kinematics (8 hand elevation angles; MEKs) that capture the global functional motor output, as opposed to the limited view offered by recording few muscles. By repeating the same protocol twice, and a third time after continuous theta burst stimulation (cTBS) over the motor cortex, we observe significant time-dependent grip-specific MEPs and MEKs modulations, that disappeared after cTBS. MEKs, differently from MEPs, exhibit a consistent significant modulation across pre-cTBS sessions. Beside clear methodological implications, the multidimensionality of MEKs opens a window on muscle synergies needed to overcome system redundancy. By providing better access to the AON computations, our results strengthen the idea that action observation shares key organizational similarities with action execution.
Collapse
|
23
|
Tracking the Time Course of Top-Down Contextual Effects on Motor Responses during Action Comprehension. J Neurosci 2017; 36:11590-11600. [PMID: 27852769 DOI: 10.1523/jneurosci.4340-15.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 01/13/2023] Open
Abstract
Context plays a key role in coding high-level components of others' behavior, including the goal and the intention of an observed action. However, little is known about its possible role in shaping lower levels of action processing, such as simulating action kinematics and muscular activity. Furthermore, there is no evidence regarding the time course and the neural mechanisms subserving this modulation. To address these issues, we combined single-pulse transcranial magnetic stimulation and motor-evoked potentials while healthy humans watched videos of everyday actions embedded in congruent, incongruent, or ambiguous contexts. Video endings were occluded from view and participants had to predict action unfolding. Transcranial magnetic stimulation was delivered at 80, 240, and 400 ms after action onset. An earlier selective facilitation of motor resonance occurring at 240 ms was observed for actions embedded in congruent contexts, compared with those occurring in incongruent and ambiguous ones. Later on, at 400 ms, a selective inhibition of motor resonance was found for actions embedded in incongruent contexts, compared with those taking place in congruent and ambiguous ones. No modulations were observed at 80 ms. Together, these findings indicate that motor resonance can be modulated by contextual information with different timings, depending on the (in)congruency between the different levels of action representation. Furthermore, the different time course of these effects suggests that they stem from partially independent mechanisms, with the early facilitation directly involving M1, and the later inhibition recruiting high-level structures outside the motor system. SIGNIFICANCE STATEMENT Previous studies indicate that, when we observe other people's actions, the context in which actions take place influences intention understanding. However, little is known about the precise mechanisms involved in the contextual modulation of action representation (i.e., inhibition vs facilitation) and how they unfold in time. The present study sheds light on these aspects. Specifically, we show an early top-down facilitation (at ∼240 ms) and a later inhibition (at ∼400 ms) of motor resonance in response to actions observed in congruent and incongruent contexts, respectively.
Collapse
|
24
|
Lehner R, Meesen R, Wenderoth N. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex. Neuropsychologia 2017; 101:1-9. [DOI: 10.1016/j.neuropsychologia.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
|
25
|
Catmur C, Heyes C. Mirroring 'meaningful' actions: Sensorimotor learning modulates imitation of goal-directed actions. Q J Exp Psychol (Hove) 2017. [PMID: 28627281 DOI: 10.1080/17470218.2017.1344257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Imitation is important in the development of social and technological skills throughout the lifespan. Experiments investigating the acquisition and modulation of imitation (and of its proposed neural substrate, the mirror neuron system) have produced evidence that the capacity for imitation depends on associative learning in which connections are formed between sensory and motor representations of actions. However, evidence that the development of imitation depends on associative learning has been found only for non-goal-directed actions. One reason for the lack of research on goal-directed actions is that imitation of such actions is commonly confounded with the tendency to respond in a spatially compatible manner. However, since the most prominent account of mirror neuron function, and hence of imitation, suggests that these cells encode goal-directed actions, it is important to establish whether sensorimotor learning can also modulate imitation of goal-directed actions. Experiment 1 demonstrated that imitation of goal-directed grasping can be measured while controlling for spatial compatibility, and Experiment 2 showed that this imitation effect can be modulated by sensorimotor training. Together, these data support the hypothesis that the capacity for behavioural imitation and the properties of the mirror neuron system are constructed in the course of development through associative learning.
Collapse
Affiliation(s)
| | - Cecilia Heyes
- 2 All Souls College, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Borgomaneri S, Vitale F, Avenanti A. Behavioral inhibition system sensitivity enhances motor cortex suppression when watching fearful body expressions. Brain Struct Funct 2017; 222:3267-3282. [DOI: 10.1007/s00429-017-1403-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022]
|
27
|
Bardi L, Gheza D, Brass M. TPJ-M1 interaction in the control of shared representations: New insights from tDCS and TMS combined. Neuroimage 2017; 146:734-740. [DOI: 10.1016/j.neuroimage.2016.10.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
|
28
|
Taschereau-Dumouchel V, Hétu S, Michon PE, Vachon-Presseau E, Massicotte E, De Beaumont L, Fecteau S, Poirier J, Mercier C, Chagnon YC, Jackson PL. BDNF Val 66Met Polymorphism Influences Visuomotor Associative Learning and the Sensitivity to Action Observation. Sci Rep 2016; 6:34907. [PMID: 27703276 PMCID: PMC5050503 DOI: 10.1038/srep34907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Motor representations in the human mirror neuron system are tuned to respond to specific observed actions. This ability is widely believed to be influenced by genetic factors, but no study has reported a genetic variant affecting this system so far. One possibility is that genetic variants might interact with visuomotor associative learning to configure the system to respond to novel observed actions. In this perspective, we conducted a candidate gene study on the Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, a genetic variant linked to motor learning in regions of the mirror neuron system, and tested the effect of this polymorphism on motor facilitation and visuomotor associative learning. In a single-pulse TMS study carried on 16 Met (Val/Met and Met/Met) and 16 Val/Val participants selected from a large pool of healthy volunteers, Met participants showed significantly less muscle-specific corticospinal sensitivity during action observation, as well as reduced visuomotor associative learning, compared to Val homozygotes. These results are the first evidence of a genetic variant tuning sensitivity to action observation and bring to light the importance of considering the intricate relation between genetics and associative learning in order to further understand the origin and function of the human mirror neuron system.
Collapse
Affiliation(s)
- Vincent Taschereau-Dumouchel
- École de psychologie, Université Laval, Québec, G1V 0A6, Canada.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| | - Sébastien Hétu
- Human Neuroimaging laboratory, Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA
| | - Pierre-Emmanuel Michon
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| | | | - Elsa Massicotte
- École de psychologie, Université Laval, Québec, G1V 0A6, Canada.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| | - Louis De Beaumont
- Departement de psychologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada.,Centre de recherche de l'Hopital Sacré-Coeur, Montréal, Québec, H4J 1C5, Canada
| | - Shirley Fecteau
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada.,Department de réadaptation, Université Laval, Québec, G1V 0A6, Canada.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, US
| | - Judes Poirier
- Department of psychiatry and medicine, McGill University, Montréal, Québec, H3A 1A1, Canada.,Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada
| | - Catherine Mercier
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Department de réadaptation, Université Laval, Québec, G1V 0A6, Canada
| | - Yvon C Chagnon
- Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada.,Département de Psychiatrie et des Neurosciences, Université Laval, Québec, G1V 0A6, Canada
| | - Philip L Jackson
- École de psychologie, Université Laval, Québec, G1V 0A6, Canada.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| |
Collapse
|
29
|
Amoruso L, Urgesi C. Familiarity modulates motor activation while other species' actions are observed: a magnetic stimulation study. Eur J Neurosci 2016; 43:765-72. [DOI: 10.1111/ejn.13154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lucia Amoruso
- Laboratory of Cognitive Neuroscience; Department of Human Sciences; University of Udine; via Margreth 3 I-33100 Udine Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience; Department of Human Sciences; University of Udine; via Margreth 3 I-33100 Udine Italy
- Polo Friuli Venezia Giulia; Scientific Institute (IRRCS) Eugenio Medea; Udine Italy
- School of Psychology; Bangor University; Bangor Wales, UK
| |
Collapse
|
30
|
Messina I, Cattaneo L, Venuti P, de Pisapia N, Serra M, Esposito G, Rigo P, Farneti A, Bornstein MH. Sex-Specific Automatic Responses to Infant Cries: TMS Reveals Greater Excitability in Females than Males in Motor Evoked Potentials. Front Psychol 2016; 6:1909. [PMID: 26779061 PMCID: PMC4703787 DOI: 10.3389/fpsyg.2015.01909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS). Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs) from the biceps brachii (BB) and interosseus dorsalis primus (ID1) muscles as produced by TMS delivered from 0 to 250 ms after sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was attenuated to stimuli increasingly different from natural cry and absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this response is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation.
Collapse
Affiliation(s)
- Irene Messina
- Department of Philosophy, Sociology, Education and Applied Psychology, University of PaduaPadua, Italy
| | - Luigi Cattaneo
- Center for Mind/Brain Sciences, University of TrentoTrento, Italy
| | - Paola Venuti
- Department of Psychology and Cognitive Sciences, University of TrentoTrento, Italy
| | - Nicola de Pisapia
- Department of Psychology and Cognitive Sciences, University of TrentoTrento, Italy
| | - Mauro Serra
- Department of Psychology and Cognitive Sciences, University of TrentoTrento, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Sciences, University of TrentoTrento, Italy
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Paola Rigo
- Department of Psychology and Cognitive Sciences, University of TrentoTrento, Italy
| | | | - Marc H. Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesda, MD, USA
| |
Collapse
|
31
|
Abstract
Sensory events in the space around us trigger specific motor patterns directed toward or away from the spatial location of the sensory source. Spatially-defined sensorimotor associations are well-known in the visual domain but less so for the auditory modality. In particular no spatially-directed audio-motor association has been described for the upper limb. We tested the instantaneous directional tuning of the corticospinal system by means of single-pulse transcranial magnetic stimulation (TMS) over the left motor cortex in 16 healthy volunteers while at rest. We recorded the lateral accelerations of the TMS-evoked movement by means of an accelerometer placed on the forearm. Acoustic stimuli (pure tone frequency=1000Hz, duration=50ms) coming from 25 different directions lying in the axial anterior half-plane at the height of the participant's ears were played on earphones. The entire set of sound directions covered a span of 160° (±80° where 0° is the frontal direction) at a fixed azimuth angle. Six different intervals between sound onset and TMS (0, 25, 50, 100, 150 and 200ms) were tested for each sound direction. Significant correlations were found between sound origin and TMS-evoked arm accelerations only when TMS was delivered 50ms prior to sound onset. We show the presence in the upper limb motor system of auditory spatial tuning. Sound information accesses the motor system at very short latency, potentially compatible with both a subcortical and a cortical origin of the response. The use of TMS-evoked accelerations allowed us to disclose a strict directional tuning in audio-motor associations.
Collapse
Affiliation(s)
- L Cattaneo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy.
| | - G Barchiesi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| |
Collapse
|
32
|
Sartori L, Betti S, Chinellato E, Castiello U. The multiform motor cortical output: Kinematic, predictive and response coding. Cortex 2015; 70:169-78. [DOI: 10.1016/j.cortex.2015.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/30/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
|
33
|
Finisguerra A, Maffongelli L, Bassolino M, Jacono M, Pozzo T, D'Ausilio A. Generalization of motor resonance during the observation of hand, mouth, and eye movements. J Neurophysiol 2015; 114:2295-304. [PMID: 26289463 DOI: 10.1152/jn.00433.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of the motor cortex shows that hand action observation (AO) modulates corticospinal excitability (CSE). CSE modulation alternatively maps low-level kinematic characteristics or higher-level features, like object-directed action goals. However, action execution is achieved through the control of muscle synergies, consisting of coordinated patterns of muscular activity during natural movements, rather than single muscles or object-directed goals. This synergistic organization of action execution also underlies the ability to produce the same functional output (i.e., grasping an object) using different effectors. We hypothesize that motor system activation during AO may rely on similar principles. To investigate this issue, we recorded both hand CSE and TMS-evoked finger movements which provide a much more complete description of coordinated patterns of muscular activity. Subjects passively watched hand, mouth and eyelid opening or closing, which are performing non-object-directed (intransitive) actions. Hand and mouth share the same potential to grasp objects, whereas eyelid does not allow object-directed (transitive) actions. Hand CSE modulation generalized to all effectors, while TMS evoked finger movements only to mouth AO. Such dissociation suggests that the two techniques may have different sensitivities to fine motor modulations induced by AO. Differently from evoked movements, which are sensitive to the possibility to achieve object-directed action, CSE is generically modulated by "opening" vs. "closing" movements, independently of which effector was observed. We propose that motor activities during AO might exploit the same synergistic mechanisms shown for the neural control of movement and organized around a limited set of motor primitives.
Collapse
Affiliation(s)
- Alessandra Finisguerra
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy; Dipartimento di Scienze Umane, Università Degli Studi di Udine, Udine, Italy
| | - Laura Maffongelli
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy
| | - Michela Bassolino
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy; Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; and
| | - Marco Jacono
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy
| | - Thierry Pozzo
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy; IUF, INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| | - Alessandro D'Ausilio
- Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy;
| |
Collapse
|
34
|
Causative role of left aIPS in coding shared goals during human-avatar complementary joint actions. Nat Commun 2015; 6:7544. [PMID: 26154706 PMCID: PMC4510640 DOI: 10.1038/ncomms8544] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 11/08/2022] Open
Abstract
Successful motor interactions require agents to anticipate what a partner is doing in order to predictively adjust their own movements. Although the neural underpinnings of the ability to predict others' action goals have been well explored during passive action observation, no study has yet clarified any critical neural substrate supporting interpersonal coordination during active, non-imitative (complementary) interactions. Here, we combine non-invasive inhibitory brain stimulation (continuous Theta Burst Stimulation) with a novel human–avatar interaction task to investigate a causal role for higher-order motor cortical regions in supporting the ability to predict and adapt to others' actions. We demonstrate that inhibition of left anterior intraparietal sulcus (aIPS), but not ventral premotor cortex, selectively impaired individuals' performance during complementary interactions. Thus, in addition to coding observed and executed action goals, aIPS is crucial in coding ‘shared goals', that is, integrating predictions about one's and others' complementary actions. The neural mechanisms supporting imitative motor interactions have been well studied. However, considerably less is known about the mechanisms supporting complementary interactions. Here the authors demonstrate a causal role for left anterior intraparietal sulcus in coding complementary motor goals.
Collapse
|
35
|
Sartori L, Betti S, Perrone C, Castiello U. Congruent and Incongruent Corticospinal Activations at the Level of Multiple Effectors. J Cogn Neurosci 2015; 27:2063-70. [PMID: 26102231 DOI: 10.1162/jocn_a_00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Motor resonance is defined as the subliminal activation of the motor system while observing actions performed by others. However, resonating with another person's actions is not always an appropriate response: In real life, people do not just imitate but rather respond in a suitable fashion. A growing body of neurophysiologic studies has demonstrated that motor resonance can be overridden by complementary motor responses (such as preparing a precision grip on a small object when seeing an open hand in sign of request). In this study, we investigated the relationship between congruent and incongruent corticospinal activations at the level of multiple effectors. The modulation of motor evoked potentials evoked by single-pulse TMS over the motor cortex was assessed in upper and lower limb muscles of participants observing a soccer player performing a penalty kick straight in their direction. Study results revealed a double dissociation: Seeing the soccer player kicking the ball triggered a motor resonance in the observer's lower limb, whereas the upper limb response afforded by the object was overridden. On the other hand, seeing the ball approaching the observers elicited a complementary motor activation in upper limbs while motor resonance in lower limbs disappeared. Control conditions showing lateral kicks, mimicked kicks, and a ball in penalty area were also included to test the motor coding of object affordances. Results point to a modulation of motor responses in different limbs over the course of action and in function of their relevance in different contexts. We contend that ecologically valid paradigms are now needed to shed light on the motor system functioning in complex forms of interaction.
Collapse
|
36
|
Bardi L, Bundt C, Notebaert W, Brass M. Eliminating mirror responses by instructions. Cortex 2015; 70:128-36. [PMID: 26031487 DOI: 10.1016/j.cortex.2015.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Abstract
The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed.
Collapse
Affiliation(s)
- Lara Bardi
- Department of Experimental Psychology, Ghent University, Belgium.
| | - Carsten Bundt
- Department of Experimental Psychology, Ghent University, Belgium
| | - Wim Notebaert
- Department of Experimental Psychology, Ghent University, Belgium
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Belgium
| |
Collapse
|
37
|
Abstract
Complementary colors are color pairs which, when combined in the right proportions, produce white or black. Complementary actions refer here to forms of social interaction wherein individuals adapt their joint actions according to a common aim. Notably, complementary actions are incongruent actions. But being incongruent is not sufficient to be complementary (i.e., to complete the action of another person). Successful complementary interactions are founded on the abilities: (i) to simulate another person's movements, (ii) to predict another person's future action/s, (iii) to produce an appropriate incongruent response which differ, while interacting, with observed ones, and (iv) to complete the social interaction by integrating the predicted effects of one's own action with those of another person. This definition clearly alludes to the functional importance of complementary actions in the perception-action cycle and prompts us to scrutinize what is taking place behind the scenes. Preliminary data on this topic have been provided by recent cutting-edge studies utilizing different research methods. This mini-review aims to provide an up-to-date overview of the processes and the specific activations underlying complementary actions.
Collapse
Affiliation(s)
- Luisa Sartori
- Dipartimento di Psicologia Generale, Università di Padova , Padova, Italy ; Cognitive Neuroscience Center, Università di Padova , Padova, Italy
| | - Sonia Betti
- Dipartimento di Psicologia Generale, Università di Padova , Padova, Italy
| |
Collapse
|
38
|
Seeing fearful body language rapidly freezes the observer's motor cortex. Cortex 2015; 65:232-45. [DOI: 10.1016/j.cortex.2015.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
|
39
|
Gueugneau N, Mc Cabe SI, Villalta JI, Grafton ST, Della-Maggiore V. Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time. J Neurophysiol 2015; 113:3700-7. [PMID: 25810483 DOI: 10.1152/jn.00416.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 03/20/2015] [Indexed: 11/22/2022] Open
Abstract
Motor facilitation refers to the specific increment in corticospinal excitability (CSE) elicited by the observation of actions performed by others. To date, the precise nature of the mechanism at the basis of this phenomenon is unknown. One possibility is that motor facilitation is driven by a predictive process reminiscent of the role of forward models in motor control. Alternatively, motor facilitation may result from a model-free mechanism by which the basic elements of the observed action are directly mapped onto their cortical representations. Our study was designed to discern these alternatives. To this aim, we recorded the time course of CSE for the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM) during observation of three grasping actions in real time, two of which strongly diverged in kinematics from their natural (invariant) form. Although artificially slow movements used in most action observation studies might enhance the observer's discrimination performance, the use of videos in real time is crucial to maintain the time course of CSE within the physiological range of daily actions. CSE was measured at 4 time points within a 240-ms window that best captured the kinematic divergence from the invariant form. Our results show that CSE of the FDI, not the ADM, closely follows the functional role of the muscle despite the mismatch between the natural and the divergent kinematics. We propose that motor facilitation during observation of actions performed in real time reflects the model-free coding of perceived movement following a direct mapping mechanism.
Collapse
Affiliation(s)
- Nicolas Gueugneau
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Sofia I Mc Cabe
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Jorge I Villalta
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Scott T Grafton
- Department of Psychology, University of California, Santa Barbara, California
| | - Valeria Della-Maggiore
- Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay), Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| |
Collapse
|
40
|
D'Ausilio A, Bartoli E, Maffongelli L. Motor control may support mirror neuron research with new hypotheses and methods: reply to comments on "Grasping synergies: a motor-control approach to the mirror neuron mechanism". Phys Life Rev 2015; 12:133-7. [PMID: 25792432 DOI: 10.1016/j.plrev.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 11/26/2022]
|
41
|
Grasping synergies: A motor-control approach to the mirror neuron mechanism. Phys Life Rev 2015; 12:91-103. [DOI: 10.1016/j.plrev.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/21/2022]
|
42
|
Seegelke C. Observing end-state comfort favorable actions does not modulate action plan recall. Front Psychol 2015; 6:45. [PMID: 25688223 PMCID: PMC4310272 DOI: 10.3389/fpsyg.2015.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/09/2015] [Indexed: 12/04/2022] Open
Abstract
A large corpus of work demonstrates that observing other people’s actions activates corresponding motor representations in the observer by running an internal simulation of the observed action. Recent evidence suggests that recalled action plans reflect a plan of how the observer would execute that action (based on the specific motor representation) rather than a plan of the actually observed action (based on the visual representation). This study examined whether people would recall an action plan based on a visual representation if the observed movement is biomechanically favorable for their own subsequent action. Participants performed an object manipulation task alongside a confederate. In the intra-individual task, the participant (or confederate) transported a plunger from an outer platform of fixed height to a center target platform located at different heights (home-to-target move), and then the same person transported the plunger back to the outer platform (target-back-to-home move). In the inter-individual task, the sequence was split between the two persons such that the participant (or confederate) performed the home-to-target move and the other person performed the target-back-to-home move. Importantly, the confederate always grasped the plunger at the same height. This grasp height was designated such that if participants would copy the action (i.e., grasp the object at the same height) it would place the participant’s arm in a comfortable position at the end of the target-back-to-home move (i.e., end-state comfort). Results show that participants’ grasp height was inversely related to center target height and similar regardless of direction (home-to-target vs. target-back-to-home move) and task (intra- vs. inter-individual). In addition, during the inter-individual task, participant’s target-back-to-home grasp height was correlated with their own, but not with the confederate’s grasp height during the home-to-target moves. These findings provide evidence that observing actions that are biomechanically favorable for subsequent action execution does not influence action plan recall processes.
Collapse
Affiliation(s)
- Christian Seegelke
- Neurocognition and Action Research Group - Faculty of Psychology and Sport Science, Bielefeld University Bielefeld, Germany ; Center of Excellence Cognitive Interaction Technology Bielefeld, Germany
| |
Collapse
|
43
|
Cattaneo L. Granularity within the mirror system is not informative on action perception: comment on "Grasping synergies: a motor-control approach to the mirror neuron mechanism" by D'Ausilio et al. Phys Life Rev 2015; 12:123-5. [PMID: 25637139 DOI: 10.1016/j.plrev.2015.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/09/2015] [Indexed: 11/15/2022]
Affiliation(s)
- Luigi Cattaneo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy.
| |
Collapse
|
44
|
Motor resonance meets motor performance. Neuropsychologia 2015; 69:93-104. [PMID: 25619846 DOI: 10.1016/j.neuropsychologia.2015.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/19/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
Abstract
The aim of the present work is to explore which of two different models better explains facilitation/interference effects when participants have to conditionally react to an observed action with a movement. The Dimensional Overlap model assumes two parallel routes, an automatic route and a rule-based one, that interact only when the stimulus-set and the response-set share some dimensions. In the alternative model, a motor resonance for rule-based reaction, the automatic visuo-motor transformation is always an obligatory step that provides the correct categorization of the observed action as the input for the rule-based route, thus linking the two routes in a serial fashion. We explicitly tested which of the hypotheses fits better the data by asking participants to perform one of two different actions in a two-choice reaction paradigm. In one condition participants were required to perform the opposite action compared to the one they saw (COUNTER task: see A→do B, see B→do A), while in the other they were required to perform two actions that did not share any dimension with the stimulus-set (NEUTRAL task: see A→do C, see B→do D). We predicted an advantage for the NEUTRAL task if the Dimensional Overlap model was correct, while a similar performance was foreseen if the motor resonance-based model was correct. Since the interpretation of these results was not straightforward, we conducted a distributional analysis of participants' response accuracies in order to understand whether a serial or a general parallel model explained better the data. We found clear evidence that participants responded above chance before the motor representation of the action observed was activated. We conclude that two separate systems in the human brain can transform observed actions in own motor representations. One is stimulus-driven, while the second is rule-driven. Likely, their activity is mutually independent along parallel pathways.
Collapse
|
45
|
Mattiassi ADA, Mele S, Ticini LF, Urgesi C. Conscious and Unconscious Representations of Observed Actions in the Human Motor System. J Cogn Neurosci 2014; 26:2028-41. [DOI: 10.1162/jocn_a_00619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Action observation activates the observer's motor system. These motor resonance responses are automatic and triggered even when the action is only implied in static snapshots. However, it is largely unknown whether an action needs to be consciously perceived to trigger motor resonance. In this study, we used single-pulse TMS to study the facilitation of corticospinal excitability (a measure of motor resonance) during supraliminal and subliminal presentations of implied action images. We used a forward and backward dynamic masking procedure that successfully prevented the conscious perception of prime stimuli depicting a still hand or an implied abduction movement of the index or little finger. The prime was followed by the supraliminal presentation of a still or implied action probe hand. Our results revealed a muscle-specific increase of motor facilitation following observation of the probe hand actions that were consciously perceived as compared with observation of a still hand. Crucially, unconscious perception of prime hand actions presented before probe still hands did not increase motor facilitation as compared with observation of a still hand, suggesting that motor resonance requires perceptual awareness. However, the presentation of a masked prime depicting an action that was incongruent with the probe hand action suppressed motor resonance to the probe action such that comparable motor facilitation was recorded during observation of implied action and still hand probes. This suppression of motor resonance may reflect the processing of action conflicts in areas upstream of the motor cortex and may subserve a basic mechanism for dealing with the multiple and possibly incongruent actions of other individuals.
Collapse
Affiliation(s)
| | | | | | - Cosimo Urgesi
- 1Università di Udine
- 3Istituto di Ricovero e Cura a Carattere Scientifico “E. Medea,” Polo Friuli Venezia Giulia, San Vito al Tagliamento (Pordenone), Italy
| |
Collapse
|
46
|
Borgomaneri S, Gazzola V, Avenanti A. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language. Brain Struct Funct 2014; 220:2765-81. [PMID: 25023734 PMCID: PMC4549387 DOI: 10.1007/s00429-014-0825-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/12/2014] [Indexed: 12/25/2022]
Abstract
Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of motor cortex engagement during emotion perception. Participants observed pictures of body expressions and categorized them as happy, fearful or neutral while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed a reduction of excitability for happy and fearful emotional bodies that was specific to the right hemisphere and correlated with participants’ disposition to feel personal distress. This ‘orienting’ inhibitory response to emotional bodies was also paralleled by a general drop in categorization accuracy when stimulating the right but not the left motor cortex. Conversely, at 300 ms, greater excitability for negative, positive and neutral movements was found in both hemispheres. This later motor facilitation marginally correlated with participants’ tendency to assume the psychological perspectives of others and reflected simulation of the movement implied in the neutral and emotional body expressions. These findings highlight the motor system’s involvement during perception of emotional bodies. They suggest that fast orienting reactions to emotional cues—reflecting neural processing necessary for visual perception—occur before motor features of the observed emotional expression are simulated in the motor system and that distinct empathic dispositions influence these two neural motor phenomena. Implications for theories of embodied simulation are discussed.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Department of Neuroscience, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
47
|
Urgesi C, Candidi M, Avenanti A. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients. Front Hum Neurosci 2014; 8:344. [PMID: 24910603 PMCID: PMC4039011 DOI: 10.3389/fnhum.2014.00344] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/06/2014] [Indexed: 11/29/2022] Open
Abstract
Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding.
Collapse
Affiliation(s)
- Cosimo Urgesi
- Laboratorio di Neuroscienze Cognitive, Dipartimento di Scienze Umane, Università di Udine Udine, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico "Eugenio Medea," Polo Friuli Venezia Giulia, San Vito al Tagliamento Pordenone, Italy
| | - Matteo Candidi
- Dipartimento di Psicologia, Università "Sapienza" di Roma Rome, Italy ; IRCCS Fondazione Santa Lucia Rome, Italy
| | - Alessio Avenanti
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Psicologia e Centro studi e ricerche in Neuroscienze Cognitive, Alma Mater Studiorum - Università di Bologna Campus di Cesena, Italy
| |
Collapse
|
48
|
Abstract
AbstractThis article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action “goals”; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons (“wealth of the stimulus”); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.
Collapse
|
49
|
Abstract
Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.
Collapse
Affiliation(s)
- Cecilia Heyes
- All Souls College and Department of Experimental Psychology, University of Oxford, , Oxford OX1 4AL, UK
| |
Collapse
|
50
|
Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S. Cortical Mechanisms Underlying the Organization of Goal-Directed Actions and Mirror Neuron-Based Action Understanding. Physiol Rev 2014; 94:655-706. [PMID: 24692357 DOI: 10.1152/physrev.00009.2013] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the functions of motor system evolved remarkably in the last 20 years. This is the consequence not only of an increase in the amount of data on this system but especially of a paradigm shift in our conceptualization of it. Motor system is not considered anymore just a “producer” of movements, as it was in the past, but a system crucially involved in cognitive functions. In the present study we review the data on the cortical organization underlying goal-directed actions and action understanding. Our review is subdivided into two major parts. In the first part, we review the anatomical and functional organization of the premotor and parietal areas of monkeys and humans. We show that the parietal and frontal areas form circuits devoted to specific motor functions. We discuss, in particular, the visuo-motor transformation necessary for reaching and for grasping. In the second part we show how a specific neural mechanism, the mirror mechanism, is involved in understanding the action and intention of others. This mechanism is located in the same parieto-frontal circuits that mediate goal-directed actions. We conclude by indicating future directions for studies on the mirror mechanism and suggest some major topics for forthcoming research.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Maddalena Fabbri-Destro
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Stefano Rozzi
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| |
Collapse
|