1
|
Lopes JJ, Carruthers SP, Meyer D, Dean B, Rossell SL. Glutamatergic neurotransmission in schizophrenia: A systematic review and quantitative synthesis of proton magnetic resonance spectroscopy studies across schizophrenia spectrum disorders. Aust N Z J Psychiatry 2024; 58:930-951. [PMID: 38812258 PMCID: PMC11529133 DOI: 10.1177/00048674241254216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Studies using proton magnetic resonance spectroscopy reveal substantial inconsistencies in the levels of brain glutamate, glutamine and glutamate + glutamine across schizophrenia spectrum disorders. This systematic review employs qualitative and quantitative methods to analyse the patterns and relationships between glutamatergic metabolites, schizophrenia spectrum disorders and brain regions. METHODS A literature search was conducted using various databases with keywords including glutamate, glutamine, schizophrenia, psychosis and proton magnetic resonance spectroscopy. Inclusion criteria were limited to case-control studies that reported glutamatergic metabolite levels in adult patients with a schizophrenia spectrum disorder diagnosis - i.e. first-episode psychosis, schizophrenia, treatment-resistant schizophrenia and/or ultra-treatment-resistant schizophrenia - using proton magnetic resonance spectroscopy at 3 T or above. Pooled study data were synthesized and analysed. RESULTS A total of 92 studies met the inclusion criteria, including 2721 healthy controls and 2822 schizophrenia spectrum disorder participants. Glu levels were higher in the basal ganglia, frontal cortex and medial prefrontal of first-episode psychosis participants, contrasting overall lower levels in schizophrenia participants. For Gln, strong differences in metabolite levels were evident in the basal ganglia, dorsolateral prefrontal cortex and frontal cortex, with first-episode psychosis showing significantly higher levels in the basal ganglia. In glutamate + glutamine, higher metabolite levels were found across schizophrenia spectrum disorder groups, particularly in the basal ganglia and dorsolateral prefrontal cortex of treatment-resistant schizophrenia participants. Significant relationships were found between metabolite levels and medication status, clinical measures and methodological variables. CONCLUSION The review highlights abnormal glutamatergic metabolite levels throughout schizophrenia spectrum disorders and in specific brain regions. The review underscores the importance of standardized future research assessing glutamatergic metabolites using proton magnetic resonance spectroscopy due to considerable literature heterogeneity.
Collapse
Affiliation(s)
- Jamie J Lopes
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Denny Meyer
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Brian Dean
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Abdulmajeed AZ, Nazhan W. Kinetic Properties of Glutamate Carboxypeptidase II Partially Purified from Leukodystrophy Patient's Serum. ACS Chem Neurosci 2024; 15:3384-3390. [PMID: 39241229 DOI: 10.1021/acschemneuro.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Glutamate carboxypeptidase II (GCPII), a metallopeptidase, is a recently identified pharmacologically targeted protein that is predominantly expressed in the human central nervous system, where it degrades the most abundant neuropeptide in the brain, N-acetyl aspartate glutamate, releasing free glutamate. Dysregulated glutamate release is associated with numerous neurological disorders and brain inflammation. The present study was designed to evaluate the activity of GCPII in 60 serum samples from patients with leukodystrophy and 30 samples from a control group with an age of less than 10 years. Subsequently, the enzyme was purified from the serum of leukodystrophy patients for experimental studies using ion exchange and gel filtration techniques to enhance the enzyme purity and reduce impurities. Finally, the kinetic properties of the purified enzyme were measured. The results of the present study demonstrated a reduction in the efficacy of the enzyme in comparison to the control group at a significance level of P ≤ 0.00003. Additionally, the kinetic study of the purified enzyme revealed a Michaelis-Menten constant value of 0.012 μM and a maximum velocity of 1.1318 μmol min-1. As demonstrated by the Lineweaver-Burk plot, using folate as the substrate, the Km value indicates the high affinity of the enzyme for folate, which is a crucial consideration in the development of therapies for neurological diseases. Additionally, the enzyme exhibited optimal activity at 37 °C and pH 7.4, with an incubation time of 5 min. The significance of GCPII in patients with leukodystrophy is 2-fold: first, it may serve as an early diagnostic marker for leukodystrophy, and second, it could represent a potential therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Aws Z Abdulmajeed
- Collage of Basic Education-Hadeetha, University of Anbar, Ramadi 31000, Iraq
| | - Wasan Nazhan
- Collage of Education for Pure Sciences, Tikrit University, Tikrit 34001, Iraq
| |
Collapse
|
3
|
McKenna F, Gupta PK, Sui YV, Bertisch H, Gonen O, Goff DC, Lazar M. Microstructural and Microvascular Alterations in Psychotic Spectrum Disorders: A Three-Compartment Intravoxel Incoherent Imaging and Free Water Model. Schizophr Bull 2023; 49:1542-1553. [PMID: 36921060 PMCID: PMC10686346 DOI: 10.1093/schbul/sbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Microvascular and inflammatory mechanisms have been hypothesized to be involved in the pathophysiology of psychotic spectrum disorders (PSDs). However, data evaluating these hypotheses remain limited. STUDY DESIGN We applied a three-compartment intravoxel incoherent motion free water imaging (IVIM-FWI) technique that estimates the perfusion fraction (PF), free water fraction (FW), and anisotropic diffusion of tissue (FAt) to examine microvascular and microstructural changes in gray and white matter in 55 young adults with a PSD compared to 37 healthy controls (HCs). STUDY RESULTS We found significantly increased PF, FW, and FAt in gray matter regions, and significantly increased PF, FW, and decreased FAt in white matter regions in the PSD group versus HC. Furthermore, in patients, but not in the HC group, increased PF, FW, and FAt in gray matter and increased PF in white matter were significantly associated with poor performance on several cognitive tests assessing memory and processing speed. We additionally report significant associations between IVIM-FWI metrics and myo-inositol, choline, and N-acetylaspartic acid magnetic resonance spectroscopy imaging metabolites in the posterior cingulate cortex, which further supports the validity of PF, FW, and FAt as microvascular and microstructural biomarkers of PSD. Finally, we found significant relationships between IVIM-FWI metrics and the duration of psychosis in gray and white matter regions. CONCLUSIONS The three-compartment IVIM-FWI model provides metrics that are associated with cognitive deficits and may reflect disease progression.
Collapse
Affiliation(s)
- Faye McKenna
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Pradeep Kumar Gupta
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yu Veronica Sui
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Hilary Bertisch
- Northwell Health, Zucker Hillside Hospital, New York, NY, USA
| | - Oded Gonen
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Donald C Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Wang D, Wang Y, Chen Y, Yu L, Wu Z, Liu R, Ren J, Fang X, Zhang C. Differences in inflammatory marker profiles and cognitive functioning between deficit and nondeficit schizophrenia. Front Immunol 2022; 13:958972. [PMID: 36341400 PMCID: PMC9627304 DOI: 10.3389/fimmu.2022.958972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Deficit schizophrenia (DS) patient is a homogenous subtype of schizophrenia that includes primary and enduring negative symptoms. This study aimed to compare the differences in cognitive functioning and plasma levels of C-reactive protein (CRP) and inflammatory cytokines among DS patients, nondeficit schizophrenia (NDS) patients, and healthy controls (HCs). A total of 141 schizophrenia patients and 67 HCs were included in this study. The schizophrenia patients were divided into DS (N= 51) and NDS (N=90) groups based on the Proxy for the Deficit Syndrome Scale (PDS). The Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were used to evaluate the clinical symptoms and cognitive performances, respectively. The plasma level of CRP, IL-1β, Il-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17, TNF-α, and IFN-γ were measured using enzyme-linked immunosorbent assays (ELISAs). Our results showed that DS patients had the worst cognitive performance, especially in the immediate memory, attention, and language dimensions, compared to the NDS and HC groups. Compared to the HCs group, DS patients had higher levels of CRP, IL-1β, IL-6, IL-8, IFN-γ, and total proinflammatory cytokines, and NDS patients had higher levels of IL-1β, IFN-γ, and proinflammatory cytokines. We also found that CRP levels were significantly increased in DS patients compared to NDS patients. Moreover, stepwise logistic regression analysis revealed that CRP is an independent risk factor for DS. Sex stratification analysis showed significant differences in almost all cytokines in female samples but not in male samples. The significant differences in cognitive performance and inflammatory components among groups suggest that deficit syndrome is an independent endophenotype of schizophrenia patients with unique immune-inflammatory features, but may have sex characteristics.
Collapse
Affiliation(s)
- Dandan Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Wu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinyu Fang, ; Chen Zhang,
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinyu Fang, ; Chen Zhang,
| |
Collapse
|
5
|
King VL, Lahti AC, Maximo JO, ver Hoef LW, John S, Kraguljac NV. Contrasting Frontoparietal Network Connectivity in Antipsychotic Medication-Naive First-Episode Psychosis Patients Who Do and Do Not Display Features of the Deficit Syndrome. Schizophr Bull 2022; 48:1344-1353. [PMID: 35869578 PMCID: PMC9673254 DOI: 10.1093/schbul/sbac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The deficit syndrome is a clinical subtype of schizophrenia that is characterized by enduring negative symptoms. Several lines of evidence point to frontoparietal involvement, but the frontoparietal control network (FPCN) and its subsystems (FPCNA and FPCNB) proposed by Yeo et al. have not been systematically characterized at rest in patients with the deficit syndrome. METHODS We used resting-state fMRI to investigate the FPCN and its subnetworks in 72 healthy controls and 65 antipsychotic medication-naive, first-episode psychosis patients (22 displayed deficit syndrome features, 43 did not). To assess whole-brain FPCN connectivity, we used the right posterior parietal cortex as the seed region. We then performed region of interest analyses in FPCN subsystems. RESULTS We found that patterns of FPCN dysconnectivity to the whole brain differed in patients who displayed deficit syndrome features compared with those who did not. Examining the FPCN on a more granular level revealed reduced within-FPCN(A) connectivity only in patients displaying deficit features. FPCNB connectivity did not differ between patient groups. DISCUSSION Here, we describe a neurobiological signature of aberrant FPCN connectivity in antipsychotic-naive, first-episode patients who display clinical features of the deficit syndrome. Importantly, frontoparietal subnetwork connectivity differentiated subgroups, where the FPCNA is selectively involved in patients with deficit features. Our findings add to the growing body of literature supporting a neurobiological distinction between two clinical subtypes of schizophrenia, which has the potential to be leveraged for patient stratification in clinical trials and the development of novel treatments.
Collapse
Affiliation(s)
- Victoria L King
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence W ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooraj John
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, USA; tel: 205-996-7171, e-mail:
| |
Collapse
|