1
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Hernández-García M, Fernández-Linsenbarth I, Díez Á, Fondevila Estevez S, Castaño C, Muñoz F, Sanz-Fuentenebro J, Roig-Herrero A, Molina V. Corollary Discharge Dysfunction as a Possible Substrate of Anomalous Self-experiences in Schizophrenia. Schizophr Bull 2024; 50:1137-1146. [PMID: 37951230 PMCID: PMC11349017 DOI: 10.1093/schbul/sbad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
BACKGROUND AND HYPOTHESIS Corollary discharge mechanism suppresses the conscious auditory sensory perception of self-generated speech and attenuates electrophysiological markers such as the auditory N1 Event-Related Potential (ERP) during Electroencephalographic (EEG) recordings. This phenomenon contributes to self-identification and seems to be altered in people with schizophrenia. Therefore, its alteration could be related to the anomalous self-experiences (ASEs) frequently found in these patients. STUDY DESIGN To analyze corollary discharge dysfunction as a possible substrate of ASEs, we recorded EEG ERP from 43 participants with schizophrenia and 43 healthy controls and scored ASEs with the 'Inventory of Psychotic-Like Anomalous Self-Experiences' (IPASE). Positive and negative symptoms were also scored with the 'Positive and Negative Syndrome Scale for Schizophrenia' (PANSS) and with the 'Brief Negative Symptom Scale' (BNSS) respectively. The N1 components were elicited by two task conditions: (1) concurrent listening to self-pronounced vowels (talk condition) and (2) subsequent non-concurrent listening to the same previously self-uttered vowels (listen condition). STUDY RESULTS The amplitude of the N1 component elicited by the talk condition was lower compared to the listen condition in people with schizophrenia and healthy controls. However, the difference in N1 amplitude between both conditions was significantly higher in controls than in schizophrenia patients. The values of these differences in patients correlated significantly and negatively with the IPASE, PANSS, and BNSS scores. CONCLUSIONS These results corroborate previous data relating auditory N1 ERP amplitude with altered corollary discharge mechanisms in schizophrenia and support corollary discharge dysfunction as a possible underpinning of ASEs in this illness.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | | | | | - Francisco Muñoz
- UCM-ISCIII Center for Human Evolution and Behaviour, Madrid, Spain
- Psychobiology and Behavioural Sciences Methods Department, Complutense University of Madrid, Madrid, Spain
| | | | - Alejandro Roig-Herrero
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Imaging Processing Laboratory, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, University Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
2
|
Mariano M, Rossetti I, Maravita A, Paulesu E, Zapparoli L. Sensory Attenuation Deficit and Auditory Hallucinations in Schizophrenia: A Causal Mechanism or a Risk Factor? Evidence From Meta-Analyses on the N1 Event-Related Potential Component. Biol Psychiatry 2024; 96:207-221. [PMID: 38246250 DOI: 10.1016/j.biopsych.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Sensory attenuation (SA), the dampened perception of self-generated sensory information, is typically associated with reduced event-related potential signals, such as for the N1 component of auditory event-related potentials. SA, together with efficient monitoring of intentions and actions, should facilitate the distinction between self-generated and externally generated sensory events, thereby optimizing interaction with the world. According to many, SA is deficient in schizophrenia. The question arises whether altered SA reflects a sufficient mechanism to explain positive symptoms such as auditory hallucinations. A systematic association of reduced auditory SA in hallucinating patients would support this hypothesis. METHODS We conducted a series of meta-analyses on 15 studies on auditory SA in which the N1 component of event-related potential-electroencephalogram signals was measured during talking (self-generated sensory signals condition) or when listening to prerecorded vocalizations (externally generated sensory signals condition). RESULTS We found that individuals with schizophrenia did show some auditory SA because their N1 signal was significantly attenuated in talking conditions compared with listening conditions. However, the magnitude of such attenuation was reduced in individuals with schizophrenia compared to healthy control participants. This phenomenon generalizes independently from the stage of the disease, the severity of positive symptoms, and whether patients have auditory hallucinations or not. CONCLUSIONS These findings suggest that reduced SA cannot be a sufficient mechanism for explaining positive symptoms such as auditory hallucinations in schizophrenia. Because reduced SA was also present in participants at risk of schizophrenia, reduced SA may represent a risk factor for the disorder. We discuss the implications of these results for clinical-cognitive models of schizophrenia.
Collapse
Affiliation(s)
- Marika Mariano
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Ileana Rossetti
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Angelo Maravita
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Laura Zapparoli
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| |
Collapse
|
3
|
Idei H, Yamashita Y. Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Netw 2024; 169:57-74. [PMID: 37857173 DOI: 10.1016/j.neunet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable. Herein, we review developmental neurorobotic experiments tackling problems related to the dynamic and complex properties of neurodevelopmental disorders. Specifically, we focus on neurorobotic models under predictive processing lens for the study of developmental disorders. By constructing neurorobotic models with predictive processing mechanisms of learning, perception, and action, we can simulate formations of integrated causal relationships among neurodynamical, computational, and behavioral characteristics in the robot agents while considering developmental learning processes. This framework has the potential to bind neurobiological hypotheses (excitation-inhibition imbalance and functional disconnection), computational accounts (unusual encoding of uncertainty), and clinical symptoms. Developmental neurorobotic approaches may serve as a complementary research framework for integrating fragmented knowledge and overcoming the heterogeneity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
4
|
Rummell BP, Bikas S, Babl SS, Gogos JA, Sigurdsson T. Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition. Nat Commun 2023; 14:7388. [PMID: 37968289 PMCID: PMC10651874 DOI: 10.1038/s41467-023-42964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
The ability to distinguish sensations that are self-generated from those caused by external events is disrupted in schizophrenia patients. However, the neural circuit abnormalities underlying this sensory impairment and its relationship to the risk factors for the disease is not well understood. To address this, we examined the processing of self-generated sounds in male Df(16)A+/- mice, which model one of the largest genetic risk factors for schizophrenia, the 22q11.2 microdeletion. We find that auditory cortical neurons in Df(16)A+/- mice fail to attenuate their responses to self-generated sounds, recapitulating deficits seen in schizophrenia patients. Notably, the auditory cortex of Df(16)A+/- mice displayed weaker motor-related signals and received fewer inputs from the motor cortex, suggesting an anatomical basis underlying the sensory deficit. These results provide insights into the mechanisms by which a major genetic risk factor for schizophrenia disrupts the top-down processing of sensory information.
Collapse
Affiliation(s)
- Brian P Rummell
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
| | - Solmaz Bikas
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Susanne S Babl
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Departments of Physiology, Neuroscience and Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
5
|
Okimura T, Maeda T, Mimura M, Yamashita Y. Aberrant sense of agency induced by delayed prediction signals in schizophrenia: a computational modeling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:72. [PMID: 37845242 PMCID: PMC10579420 DOI: 10.1038/s41537-023-00403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Aberrant sense of agency (SoA, a feeling of control over one's own actions and their subsequent events) has been considered key to understanding the pathology of schizophrenia. Behavioral studies have demonstrated that a bidirectional (i.e., excessive and diminished) SoA is observed in schizophrenia. Several neurophysiological and theoretical studies have suggested that aberrancy may be due to temporal delays (TDs) in sensory-motor prediction signals. Here, we examined this hypothesis via computational modeling using a recurrent neural network (RNN) expressing the sensory-motor prediction process. The proposed model successfully reproduced the behavioral features of SoA in healthy controls. In addition, simulation of delayed prediction signals reproduced the bidirectional schizophrenia-pattern SoA, whereas three control experiments (random noise addition, TDs in outputs, and TDs in inputs) demonstrated no schizophrenia-pattern SoA. These results support the TD hypothesis and provide a mechanistic understanding of the pathology underlying aberrant SoA in schizophrenia.
Collapse
Affiliation(s)
- Tsukasa Okimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takaki Maeda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, Sakuragaoka Memorial Hospital, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University, Tokyo, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
6
|
Hua L, Adams RA, Grent-'t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schultze-Lutter F, Schwannauer M, Uhlhaas PJ. Thalamo-cortical circuits during sensory attenuation in emerging psychosis: a combined magnetoencephalography and dynamic causal modelling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:25. [PMID: 37117187 PMCID: PMC10147678 DOI: 10.1038/s41537-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/28/2023] [Indexed: 04/30/2023]
Abstract
Evidence suggests that schizophrenia (ScZ) involves impairments in sensory attenuation. It is currently unclear, however, whether such deficits are present during early-stage psychosis as well as the underlying network and the potential as a biomarker. To address these questions, Magnetoencephalography (MEG) was used in combination with computational modeling to examine M100 responses that involved a "passive" condition during which tones were binaurally presented, while in an "active" condition participants were asked to generate a tone via a button press. MEG data were obtained from 109 clinical high-risk for psychosis (CHR-P) participants, 23 people with a first-episode psychosis (FEP), and 48 healthy controls (HC). M100 responses at sensor and source level in the left and right thalamus (THA), Heschl's gyrus (HES), superior temporal gyrus (STG) and right inferior parietal cortex (IPL) were examined and dynamic causal modeling (DCM) was performed. Furthermore, the relationship between sensory attenuation and persistence of attenuated psychotic symptoms (APS) and transition to psychosis was investigated in CHR-P participants. Sensory attenuation was impaired in left HES, left STG and left THA in FEP patients, while in the CHR-P group deficits were observed only in right HES. DCM results revealed that CHR-P participants showed reduced top-down modulation from the right IPL to the right HES. Importantly, deficits in sensory attenuation did not predict clinical outcomes in the CHR-P group. Our results show that early-stage psychosis involves impaired sensory attenuation in auditory and thalamic regions but may not predict clinical outcomes in CHR-P participants.
Collapse
Affiliation(s)
- Lingling Hua
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Rick A Adams
- Centre for Medical Image Computing and AI, University College London, 90 High Holborn, London, WC1V 6LJ, UK
- Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5EH, UK
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Ruchika Gajwani
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andrew I Gumley
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rajeev Krishnadas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Stephen M Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Zhang J, Yang H, Li W, Li Y, Qin J, He L. Automatic Schizophrenia Detection Using Multimodality Media via a Text Reading Task. Front Neurosci 2022; 16:933049. [PMID: 35911987 PMCID: PMC9331283 DOI: 10.3389/fnins.2022.933049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a crippling chronic mental disease that affects people worldwide. In this work, an automatic schizophrenia detection algorithm is proposed based on the reading deficit of schizophrenic patients. From speech and video modalities, the automatic schizophrenia detection algorithm illustrates abnormal speech, head movement, and reading fluency during the reading task. In the speech modality, an acoustic model of speech emotional flatness in schizophrenia is established to reflect the emotional expression flatness of schizophrenic speech from the perspective of speech production and perception. In the video modality, the head-movement-related features are proposed to illustrate the spontaneous head movement caused by repeated reading and unconscious movement, and the reading-fluency-related features are proposed to convey the damaged degree of schizophrenic patients' reading fluency. The experimental data of this work are 160 segments of speech and video data recorded by 40 participants (20 schizophrenic patients and 20 normal controls). Combined with support vector machines and random forest, the accuracy of the proposed acoustic model, the head-movement-related features, and the reading-fluency-related features range from 94.38 to 96.50%, 73.38 to 83.38%, and 79.50 to 83.63%, respectively. The average accuracy of the proposed automatic schizophrenia detection algorithm reaches 97.50%. The experimental results indicate the effectiveness of the proposed automatic detection algorithm as an auxiliary diagnostic method for schizophrenia.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Wen Li
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Qin
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ling He
- College of Biomedical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Ling He
| |
Collapse
|
8
|
Waszczuk K, Rek-Owodziń K, Tyburski E, Mak M, Misiak B, Samochowiec J. Disturbances in White Matter Integrity in the Ultra-High-Risk Psychosis State-A Systematic Review. J Clin Med 2021; 10:jcm10112515. [PMID: 34204171 PMCID: PMC8201371 DOI: 10.3390/jcm10112515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a severe and disabling mental illness whose etiology still remains unclear. The available literature indicates that there exist white matter (WM) abnormalities in people with schizophrenia spectrum disorders. Recent developments in modern neuroimaging methods have enabled the identification of the structure, morphology, and function of the underlying WM fibers in vivo. The purpose of this paper is to review the existing evidence about WM abnormalities in individuals at ultra-high risk of psychosis (UHR) with the use of diffusion tensor imaging (DTI) available from the National Center for Biotechnology Information PubMed (Medline) and Health Source: Nursing/Academic Edition databases. Of 358 relevant articles identified, 25 papers published in the years 2008–2020 were ultimately included in the review. Most of them supported the presence of subtle aberrations in WM in UHR individuals, especially in the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF). These alterations may therefore be considered a promising neurobiological marker for the risk of psychosis. However, due to methodological discrepancies and the relative scarcity of evidence, further investigation is called for, especially into connectome analysis in UHR patients.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
- Correspondence: ; Tel./Fax: +48-91-35-11-358
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.)
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, Tadeusza Kutrzeby 10 Street, 61-719 Poznan, Poland;
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, K. Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
| |
Collapse
|
9
|
Hamilton A, Northoff G. Abnormal ERPs and Brain Dynamics Mediate Basic Self Disturbance in Schizophrenia: A Review of EEG and MEG Studies. Front Psychiatry 2021; 12:642469. [PMID: 33912085 PMCID: PMC8072007 DOI: 10.3389/fpsyt.2021.642469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Interest in disordered sense of self in schizophrenia has recently re-emerged in the literature. It has been proposed that there is a basic self disturbance, underlying the diagnostic symptoms of schizophrenia, in which the person's sense of being a bounded individual continuous through time loses stability. This disturbance has been documented phenomenologically and at the level of cognitive tasks. However, the neural correlates of basic self disorder in schizophrenia are poorly understood. Methods: A search of PubMed was used to identify studies on self and schizophrenia that reported EEG or MEG data. Results: Thirty-three studies were identified, 32 using EEG and one using MEG. Their operationalizations of the self were divided into six paradigms: self-monitoring for errors, proprioception, self-other integration, self-referential processing, aberrant salience, and source monitoring. Participants with schizophrenia were less accurate on self-referential processing tasks and had slower response times across most studies. Event-related potential amplitudes differed across many early and late components, with reduced N100 suppression in source monitoring paradigms being the most replicated finding. Several studies found differences in one or more frequency band, but no coherent overall finding emerged in this area. Various other measures of brain dynamics also showed differences in single studies. Only some of the study designs were adequate to establish a causal relationship between the self and EEG or MEG measures. Conclusion: The broad range of changes suggests a global self disturbance at the neuronal level, possibly carried over from the resting state. Further studies that successfully isolate self-related effects are warranted to better understand the temporal-dynamic and spatial-topographic basis of self disorder and its relationship to basic self disturbance on the phenomenological level.
Collapse
Affiliation(s)
- Arthur Hamilton
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Salisbury DF, Wang Y, Yeh FC, Coffman BA. White Matter Microstructural Abnormalities in the Broca's-Wernicke's-Putamen "Hoffman Hallucination Circuit" and Auditory Transcallosal Fibers in First-Episode Psychosis With Auditory Hallucinations. Schizophr Bull 2020; 47:149-159. [PMID: 32766733 PMCID: PMC7825092 DOI: 10.1093/schbul/sbaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Functional connectivity abnormalities between Broca's and Wernicke's areas and the putamen revealed by functional magnetic resonance imaging (fMRI) are related to auditory hallucinations (AH). In long-term schizophrenia, reduced white matter structural integrity revealed by diffusion imaging in left arcuate fasciculus (connecting Broca's and Wernicke's areas) is likely related to AH. The structural integrity of connections with putamen and their relation to AH are unknown. Little is known about this relationship in first-episode psychosis (FEP), although auditory transcallosal connections were reported to play a role. White matter in the Broca's-Wernicke's-putamen language-related circuit and auditory transcallosal fibers was examined to investigate associations with AH in FEP. METHODS White matter connectivity was measured in 40 FEP and 32 matched HC using generalized fractional anisotropy (gFA) derived from diffusion spectrum imaging (DSI). RESULTS FEP and HC did not differ in gFA in any fiber bundle. In FEP, AH severity was significantly inversely related to gFA in auditory transcallosal fibers and left arcuate fasciculus. Although the right hemisphere arcuate fasciculus-AH association did not attain significance, the left and right arcuate fasciculus associations were not significantly different. CONCLUSIONS Despite overall normal gFA in FEP, AH severity was significantly related to gFA in transcallosal auditory fibers and the left hemisphere connection between Broca's and Wernicke's areas. Other bilateral tracts' gFA were weakly associated with AH. At the first psychotic episode, AH are more robustly associated with left hemisphere arcuate fasciculus and interhemispheric auditory fibers microstructural deficits, likely reflecting mistiming of information flow between language-related cortical centers.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA,To whom correspondence should be addressed; Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Pittsburgh, PA 15213; tel: 412-246-5123, fax: 412-246-6636, e-mail:
| | - Yiming Wang
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
11
|
Hua L, Recasens M, Grent-'t-Jong T, Adams RA, Gross J, Uhlhaas PJ. Investigating cortico-subcortical circuits during auditory sensory attenuation: A combined magnetoencephalographic and dynamic causal modeling study. Hum Brain Mapp 2020; 41:4419-4430. [PMID: 32662585 PMCID: PMC7502827 DOI: 10.1002/hbm.25134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023] Open
Abstract
Sensory attenuation refers to the decreased intensity of a sensory percept when a sensation is self‐generated compared with when it is externally triggered. However, the underlying brain regions and network interactions that give rise to this phenomenon remain to be determined. To address this issue, we recorded magnetoencephalographic (MEG) data from 35 healthy controls during an auditory task in which pure tones were either elicited through a button press or passively presented. We analyzed the auditory M100 at sensor‐ and source‐level and identified movement‐related magnetic fields (MRMFs). Regression analyses were used to further identify brain regions that contributed significantly to sensory attenuation, followed by a dynamic causal modeling (DCM) approach to explore network interactions between generators. Attenuation of the M100 was pronounced in right Heschl's gyrus (HES), superior temporal cortex (ST), thalamus, rolandic operculum (ROL), precuneus and inferior parietal cortex (IPL). Regression analyses showed that right postcentral gyrus (PoCG) and left precentral gyrus (PreCG) predicted M100 sensory attenuation. In addition, DCM results indicated that auditory sensory attenuation involved bi‐directional information flow between thalamus, IPL, and auditory cortex. In summary, our data show that sensory attenuation is mediated by bottom‐up and top‐down information flow in a thalamocortical network, providing support for the role of predictive processing in sensory‐motor system.
Collapse
Affiliation(s)
- Lingling Hua
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Marc Recasens
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tineke Grent-'t-Jong
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Joachim Gross
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignal analysis, Westphalian Wilhelms University Muenster, Münster, Germany
| | - Peter J Uhlhaas
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Whitford TJ. Speaking-Induced Suppression of the Auditory Cortex in Humans and Its Relevance to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:791-804. [PMID: 31399393 DOI: 10.1016/j.bpsc.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Speaking-induced suppression (SIS) is the phenomenon that the sounds one generates by overt speech elicit a smaller neurophysiological response in the auditory cortex than comparable sounds that are externally generated. SIS is a specific example of the more general phenomenon of self-suppression. SIS has been well established in nonhuman animals and is believed to involve the action of corollary discharges. This review summarizes, first, the evidence for SIS in heathy human participants, where it has been most commonly assessed with electroencephalography and/or magnetoencephalography using an experimental paradigm known as "Talk-Listen"; and second, the growing number of Talk-Listen studies that have reported subnormal levels of SIS in patients with schizophrenia. This result is theoretically significant, as it provides a plausible explanation for some of the most distinctive and characteristic symptoms of schizophrenia, namely the first-rank symptoms. In particular, while the failure to suppress the neural consequences of self-generated movements (such as those associated with overt speech) provides a prima facie explanation for delusions of control, the failure to suppress the neural consequences of self-generated inner speech provides a plausible explanation for certain classes of auditory-verbal hallucinations, such as audible thoughts. While the empirical evidence for a relationship between SIS and the first-rank symptoms is currently limited, I predict that future studies with more sensitive experimental designs will confirm its existence. Establishing the existence of a causal, mechanistic relationship would represent a major step forward in our understanding of schizophrenia, which is a necessary precursor to the development of novel treatments.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Poletti M, Gebhardt E, Kvande MN, Ford J, Raballo A. Motor Impairment and Developmental Psychotic Risk: Connecting the Dots and Narrowing the Pathophysiological Gap. Schizophr Bull 2019; 45:503-508. [PMID: 30007369 PMCID: PMC6483583 DOI: 10.1093/schbul/sby100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The motor system in its manifold articulations is receiving increasing clinical and research attention. This is because motor impairments constitute a central, expressive component of the mental state examination and a key transdiagnostic feature indexing disease severity. Furthermore, within the schizophrenia spectrum, the integration of neurophysiological, developmental, and phenomenological perspectives suggests that motor impairment is not simply a generic, extrinsic proxy of an altered neurodevelopment, but might be more intimately related to psychotic risk. Therefore, an increased understanding, conceptualization, and knowledge of such motor system and its anomalies could empower contemporary risk prediction and diagnostic procedures.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health, Reggio Emilia Local Health Trust, Reggio Emilia, Italy
| | - Eva Gebhardt
- Cmed Polyspecialistic Diagnostic and Therapeutic Centre, Rome, Italy
| | - Marianne N Kvande
- Department of Psychology, Psychopathology and development Research Unit, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Judith Ford
- Psychiatry Service (116D), San Francisco VA Medical Center, San Francisco, CA,Department of Psychiatry, University of California, San Francisco, CA
| | - Andrea Raballo
- Department of Psychology, Psychopathology and development Research Unit, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy,To whom correspondence should be addressed; Piazzale Lucio Severi 1, 06132 Perugia, Italy, tel: +390755784100, e-mail:
| |
Collapse
|
14
|
Efference copy/corollary discharge function and targeted cognitive training in patients with schizophrenia. Int J Psychophysiol 2018; 145:91-98. [PMID: 30599145 DOI: 10.1016/j.ijpsycho.2018.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION During vocalization, efference copy/corollary discharge mechanisms suppress the auditory cortical response to self-generated sounds as reflected in the N1 component of the auditory event-related potential (ERP). N1 suppression during talking is reduced in patients with schizophrenia. We hypothesized that these deficits would recover with auditory training that targets the speech processing system. METHODS Forty-nine individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of Targeted Auditory Training (TAT; n = 23) or Computer Games (CG; n = 26). The N1 ERP component was elicited during production (Talk) and playback (Listen) of vocalization. Effects of Treatment on Global Cognition, N1 suppression (Talk-Listen), N1 during Talking and Listening were assessed. Simple effects of the passage of time were also assessed in the HC after 28 weeks. RESULTS There was a Treatment × Time interaction revealing that N1 suppression was improved with TAT, but not with CG. TAT, but not CG, also improved Global Cognition. However, TAT and CG groups differed in their pre-treatment N1 suppression, and greater N1-suppression abnormalities were strongly associated with greater improvement in N1 suppression. CONCLUSIONS In this sample of ESZ individuals, targeted auditory training appeared to improve the function of the efference copy/corollary discharge mechanism which tended to deteriorate with computer games. It remains to be determined if baseline N1 suppression abnormalities are necessary for TAT treatment to have a positive effect on efference copy/corollary discharge function or if improvements observed in this study represent a regression to the mean N1 suppression in ESZ. TRIAL REGISTRATION ClinicalTrials.govNCT00694889. Registered 1 August 2007.
Collapse
|
15
|
Oestreich LKL, Whitford TJ, Garrido MI. Prediction of Speech Sounds Is Facilitated by a Functional Fronto-Temporal Network. Front Neural Circuits 2018; 12:43. [PMID: 29875638 PMCID: PMC5975240 DOI: 10.3389/fncir.2018.00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Predictive coding postulates that the brain continually predicts forthcoming sensory events based on past experiences in order to process sensory information and respond to unexpected events in a fast and efficient manner. Predictive coding models in the context of overt speech are believed to operate along auditory white matter pathways such as the arcuate fasciculus and the frontal aslant. The aim of this study was to investigate whether brain regions that are structurally connected via these white matter pathways are also effectively engaged when listening to externally-generated, temporally-predicable speech sounds. Using Electroencephalography (EEG) and Dynamic Causal Modeling (DCM) we investigated network models that are structurally connected via the arcuate fasciculus from primary auditory cortex to Wernicke’s and via Geschwind’s territory to Broca’s area. Connections between Broca’s and supplementary motor area, which are structurally connected by the frontal aslant, were also included. The results revealed that bilateral areas interconnected by indirect and direct pathways of the arcuate fasciculus, in addition to regions interconnected by the frontal aslant best explain the EEG responses to speech that is externally-generated but temporally predictable. These findings indicate that structurally connected brain regions involved in the production and processing of auditory stimuli are also effectively connected.
Collapse
Affiliation(s)
- Lena K L Oestreich
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas J Whitford
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Marta I Garrido
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre of Excellence for Integrative Brain Function, The University of Queensland, Brisbane, QLD, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Bansal S, Ford JM, Spering M. The function and failure of sensory predictions. Ann N Y Acad Sci 2018; 1426:199-220. [PMID: 29683518 DOI: 10.1111/nyas.13686] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Abstract
Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Sonia Bansal
- Maryland Psychiatric Research Center, University of Maryland, Catonsville, Maryland
| | - Judith M Ford
- University of California and Veterans Affairs Medical Center, San Francisco, California
| | - Miriam Spering
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|