1
|
Krause GM, Chirich Barreira LM, Albrecht A. Spatial mRNA expression patterns of orexin receptors in the dorsal hippocampus. Sci Rep 2024; 14:24788. [PMID: 39433837 PMCID: PMC11494061 DOI: 10.1038/s41598-024-76237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Orexins are wake-promoting neuropeptides that originate from hypothalamic neurons projecting to widespread brain areas throughout the central nervous system. They modulate various physiological functions via their orexin 1 (OXR1) and 2 (OXR2) receptors, including sleep-wake rhythm but also cognitive functions such as memory formation. Here, we provide a detailed analysis of OXR1 and OXR2 mRNA expression profiles in the dorsal hippocampus as a key region for memory formation, using RNAscope multiplex in situ hybridization. Interconnected subareas relevant for cognition and memory such as the medial prefrontal cortex and the nucleus reuniens of the thalamus were assessed as well. Both receptor types display distinct profiles, with the highest percentage of OXR1 mRNA-positive cells in the hilus of the dentate gyrus. Here, the content of OXR1 mRNA per cell was slightly modulated at selected time points over a 12 h light/ 12 dark light phase. Using RNAScope and quantitative polymerase chain reaction approaches, we began to address a cell-type specific expression of OXR1 in hilar GABAergic interneurons. The distinct expression profiles of both receptor subtypes within hippocampal subareas and circuits provide an interesting basis for future interventional studies on orexin receptor function in spatial and contextual memory.
Collapse
Affiliation(s)
- Gina Marie Krause
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | - Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106, Magdeburg, Germany.
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
2
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Ingravallo F, Bassi C, Zenesini C, Vignatelli L, Pagotto U, Pizza F, Plazzi G. Sex disparities in clinical features and burden of narcolepsy type 1. J Sleep Res 2024; 33:e14157. [PMID: 38318948 DOI: 10.1111/jsr.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
To investigate potential sex-related differences in patients with narcolepsy type 1, we carried out an analysis of baseline data from 93 women and 89 men with narcolepsy type 1 who participated in the TElemedicine for NARcolepsy (TENAR) trial. The following data were considered: sociodemographics; diagnostic (disease history, polysomnography, orexin, human leukocyte antigen) and clinical features, including sleepiness (Epworth Sleepiness Scale), cataplexy and other narcolepsy symptoms; disease severity (Narcolepsy Severity Scale); pharmacological treatment; depressive symptoms (Beck Depression Inventory); and self-reported relevance of eight narcolepsy-related issues. We found that, compared with men, significantly more women reported automatic behaviours (55.4% versus 40%) and had higher Epworth Sleepiness Scale (median 10 versus 9) and Beck Depression Inventory scores (median 10.5 versus 5), and there was a trend for a higher Narcolepsy Severity Scale total score in women (median 19 versus 18, p = 0.057). More women than men were officially recognized as having a disability (38% versus 22.5%) and considered 5/8 narcolepsy-related issues investigated as a relevant problem. More severe sleepiness and a greater narcolepsy-related burden in women could mirror sex differences present in the general population, or may be related to suboptimal management of narcolepsy type 1 or to more severe depressive symptoms in women. Future studies and guidelines should address these aspects.
Collapse
Affiliation(s)
- Francesca Ingravallo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Chiara Bassi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Bastianini S, Alvente S, Berteotti C, Lo Martire V, Matteoli G, Miglioranza E, Silvani A, Zoccoli G. Ageing-related modification of sleep and breathing in orexin-knockout narcoleptic mice. J Sleep Res 2024:e14287. [PMID: 39032099 DOI: 10.1111/jsr.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Narcolepsy type-1 (NT1) is a lifelong sleep disease, characterised by impairment of the orexinergic system, with a typical onset during adolescence and young adulthood. Since the wake-sleep cycle physiologically changes with ageing, this study aims to compare sleep patterns between orexin-knockout (KO) and wild type (WT) control mice at different ages. Four groups of age-matched female KO and WT mice (16 weeks of age: 8 KO-YO and 9 WT-YO mice; 87 weeks of age: 13 KO-OLD and 12 WT-OLD mice) were implanted with electrodes for discriminating wakefulness, rapid-eye-movement sleep (REMS), and non-REMS (NREMS). Mice were recorded for 48 h in their home cages and for 7 more hours into a plethysmographic chamber to characterise their sleep-breathing pattern. Regardless of orexin deficiency, OLD mice spent less time awake and had fragmentation of this behavioural state showing more bouts of shorter length than YO mice. OLD mice also had more NREMS bouts and less frequent NREMS apneas than YO mice. Regardless of age, KO mice showed cataplexy-like episodes and shorter REMS latency than WT controls and had a faster breathing rate and an increased minute ventilation during REMS. KO mice also had more wakefulness, NREMS and REMS bouts, and a shorter mean length of wakefulness bouts than WT controls. Our experiment indicated that the lack of orexins as well as ageing importantly modulate the sleep and breathing phenotype in mice. The narcoleptic phenotype caused by orexin deficiency in female mice was substantially preserved with ageing.
Collapse
Affiliation(s)
- Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elena Miglioranza
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Perger E, Silvestri R, Bonanni E, Di Perri MC, Fernandes M, Provini F, Zoccoli G, Lombardi C. Gender medicine and sleep disorders: from basic science to clinical research. Front Neurol 2024; 15:1392489. [PMID: 39050129 PMCID: PMC11267506 DOI: 10.3389/fneur.2024.1392489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Several pivotal differences in sleep and sleep disorders are recognized between women and men. This is not only due to changes in hormonal balance during women's reproductive life, such as in pregnancy and menopause. Women are more likely to report insomnia and non-specific symptoms of apneas, such as fatigue or mood disturbance, compared to men. Thus, it is important for clinicians and researchers to take sex and gender differences into account when addressing sleep disorders in order to acknowledge the biology unique to women. We present a narrative review that delves into the primary sleep disorders, starting from basic science, to explore the impact of gender differences on sleep and the current status of research on women's sleep health.
Collapse
Affiliation(s)
- Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center and Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Rosalia Silvestri
- Sleep Medicine Center, Neurophysiopathology and Movement Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU “G. Martino”, Messina, Italy
| | - Enrica Bonanni
- Sleep Disorder Center, Neurology Unit, Azienda Ospedaliero-Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Caterina Di Perri
- Sleep Medicine Center, Neurophysiopathology and Movement Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU “G. Martino”, Messina, Italy
| | - Mariana Fernandes
- Epilepsy Centre, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Federica Provini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Carolina Lombardi
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center and Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Piilgaard L, Rose L, Justinussen JL, Hviid CG, Lemcke R, Wellendorph P, Kornum BR. Non-invasive detection of narcolepsy type I phenotypical features and disease progression by continuous home-cage monitoring of activity in two mouse models: the HCRT-KO and DTA model. Sleep 2023; 46:zsad144. [PMID: 37210587 DOI: 10.1093/sleep/zsad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Narcolepsy type 1 (NT1) is a neurological disorder caused by disruption of hypocretin (HCRT; or orexin) neurotransmission leading to fragmented sleep/wake states, excessive daytime sleepiness, and cataplexy (abrupt muscle atonia during wakefulness). Electroencephalography and electromyography (EEG/EMG) monitoring is the gold standard to assess NT1 phenotypical features in both humans and mice. Here, we evaluated the digital ventilated home-cage (DVC®) activity system as an alternative to detect NT1 features in two NT1 mouse models: the genetic HCRT-knockout (-KO) model, and the inducible HCRT neuron-ablation hcrt-tTA;TetO-DTA (DTA) model, including both sexes. NT1 mice exhibited an altered dark phase activity profile and increased state transitions, compared to the wild-type (WT) phenotype. An inability to sustain activity periods >40 min represented a robust activity-based NT1 biomarker. These features were observable within the first weeks of HCRT neuron degeneration in DTA mice. We also created a nest-identification algorithm to differentiate between inactivity and activity, inside and outside the nest as a sleep and wake proxy, respectively, showing significant correlations with EEG/EMG-assessed sleep/wake behavior. Lastly, we tested the sensitivity of the activity system to detect behavioral changes in response to interventions such as repeated saline injection and chocolate. Surprisingly, daily consecutive saline injections significantly reduced activity and increased nest time of HCRT-WT mice. Chocolate increased total activity in all mice, and increased the frequency of short out-of-nest inactivity episodes in HCRT-KO mice. We conclude that the DVC® system provides a useful tool for non-invasive monitoring of NT1 phenotypical features, and has the potential to monitor drug effects in NT1 mice.
Collapse
Affiliation(s)
- Louise Piilgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Rose
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jessica L Justinussen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camille Gylling Hviid
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Sun Y, Ranjan A, Tisdale R, Ma SC, Park S, Haire M, Heu J, Morairty SR, Wang X, Rosenbaum DM, Williams NS, Brabander JKD, Kilduff TS. Evaluation of the efficacy of the hypocretin/orexin receptor agonists TAK-925 and ARN-776 in narcoleptic orexin/tTA; TetO-DTA mice. J Sleep Res 2023; 32:e13839. [PMID: 36808670 PMCID: PMC10356740 DOI: 10.1111/jsr.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023]
Abstract
The sleep disorder narcolepsy, a hypocretin deficiency disorder thought to be due to degeneration of hypothalamic hypocretin/orexin neurons, is currently treated symptomatically. We evaluated the efficacy of two small molecule hypocretin/orexin receptor-2 (HCRTR2) agonists in narcoleptic male orexin/tTA; TetO-DTA mice. TAK-925 (1-10 mg/kg, s.c.) and ARN-776 (1-10 mg/kg, i.p.) were injected 15 min before dark onset in a repeated measures design. EEG, EMG, subcutaneous temperature (Tsc ) and activity were recorded by telemetry; recordings for the first 6 h of the dark period were scored for sleep/wake and cataplexy. At all doses tested, TAK-925 and ARN-776 caused continuous wakefulness and eliminated sleep for the first hour. Both TAK-925 and ARN-776 caused dose-related delays in NREM sleep onset. All doses of TAK-925 and all but the lowest dose of ARN-776 eliminated cataplexy during the first hour after treatment; the anti-cataplectic effect of TAK-925 persisted into the second hour for the highest dose. TAK-925 and ARN-776 also reduced the cumulative amount of cataplexy during the 6 h post-dosing period. The acute increase in wakefulness produced by both HCRTR2 agonists was characterised by increased spectral power in the gamma EEG band. Although neither compound provoked a NREM sleep rebound, both compounds affected NREM EEG during the second hour post-dosing. TAK-925 and ARN-776 also increased gross motor activity, running wheel activity, and Tsc , suggesting that the wake-promoting and sleep-suppressing activities of these compounds could be a consequence of hyperactivity. Nonetheless, the anti-cataplectic activity of TAK-925 and ARN-776 is encouraging for the development of HCRTR2 agonists.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Alok Ranjan
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Tisdale
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Shun-Chieh Ma
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Sunmee Park
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Meghan Haire
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Jasmine Heu
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Stephen R. Morairty
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Xiaoyu Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel M. Rosenbaum
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noelle S. Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K. De Brabander
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
8
|
Sun Y, Tisdale RK, Yamashita A, Kilduff TS. Peripheral vs. core body temperature as hypocretin/orexin neurons degenerate: Exercise mitigates increased heat loss. Peptides 2023; 164:171002. [PMID: 36963505 PMCID: PMC10337601 DOI: 10.1016/j.peptides.2023.171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Hypocretins/Orexins (Hcrt/Ox) are hypothalamic neuropeptides implicated in diverse functions, including body temperature regulation through modulation of sympathetic vasoconstrictor tone. In the current study, we measured subcutaneous (Tsc) and core (Tb) body temperature as well as activity in a conditional transgenic mouse strain that allows the inducible ablation of Hcrt/Ox-containing neurons by removal of doxycycline (DOX) from their diet (orexin-DTA mice). Measurements were made during a baseline, when mice were being maintained on food containing DOX, and over 42 days while the mice were fed normal chow which resulted in Hcrt/Ox neuron degeneration. The home cages of the orexin-DTA mice were equipped with running wheels that were either locked or unlocked. In the presence of a locked running wheel, Tsc progressively decreased on days 28 and 42 in the DOX(-) condition, primarily during the dark phase (the major active period for rodents). This nocturnal reduction in Tsc was mitigated when mice had access to unlocked running wheels. In contrast to Tsc, Tb was largely maintained until day 42 in the DOX(-) condition even when the running wheel was locked. Acute changes in both Tsc and Tb were observed preceding, during, and following cataplexy. Our results suggest that ablation of Hcrt/Ox-containing neurons results in elevated heat loss, likely through reduced sympathetic vasoconstrictor tone, and that exercise may have some therapeutic benefit to patients with narcolepsy, a disorder caused by Hcrt/Ox deficiency. Acute changes in body temperature may facilitate prediction of cataplexy onset and lead to interventions to mitigate its occurrence.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | - Ryan K Tisdale
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Akira Yamashita
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA; Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Thomas S Kilduff
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
9
|
Morairty SR, Sun Y, Toll L, Bruchas MR, Kilduff TS. Activation of the nociceptin/orphanin-FQ receptor promotes NREM sleep and EEG slow wave activity. Proc Natl Acad Sci U S A 2023; 120:e2214171120. [PMID: 36947514 PMCID: PMC10068791 DOI: 10.1073/pnas.2214171120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Sleep/wake control involves several neurotransmitter and neuromodulatory systems yet the coordination of the behavioral and physiological processes underlying sleep is incompletely understood. Previous studies have suggested that activation of the Nociceptin/orphanin FQ (N/OFQ) receptor (NOPR) reduces locomotor activity and produces a sedation-like effect in rodents. In the present study, we systematically evaluated the efficacy of two NOPR agonists, Ro64-6198 and SR16835, on sleep/wake in rats, mice, and Cynomolgus macaques. We found a profound, dose-related increase in non-Rapid Eye Movement (NREM) sleep and electroencephalogram (EEG) slow wave activity (SWA) and suppression of Rapid Eye Movement sleep (REM) sleep in all three species. At the highest dose tested in rats, the increase in NREM sleep and EEG SWA was accompanied by a prolonged inhibition of REM sleep, hypothermia, and reduced locomotor activity. However, even at the highest dose tested, rats were immediately arousable upon sensory stimulation, suggesting sleep rather than an anesthetic state. NOPR agonism also resulted in increased expression of c-Fos in the anterodorsal preoptic and parastrial nuclei, two GABAergic nuclei that are highly interconnected with brain regions involved in physiological regulation. These results suggest that the N/OFQ-NOPR system may have a previously unrecognized role in sleep/wake control and potential promise as a therapeutic target for the treatment of insomnia.
Collapse
Affiliation(s)
- Stephen R. Morairty
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park, CA94025
| | - Yu Sun
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park, CA94025
| | - Lawrence Toll
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park, CA94025
| | - Michael R. Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Thomas S. Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park, CA94025
| |
Collapse
|
10
|
Schmidt MH, Bassetti CLA. Gender differences in narcolepsy: What are recent findings telling us? Sleep 2022; 45:6595348. [PMID: 35640640 DOI: 10.1093/sleep/zsac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Three papers currently published in SLEEP using two different mouse models of narcolepsy, including either Hcrt-tTa;TetO diptheria toxin-A (DTA) or Hypocretin knock-out (Hcrt-KO) mice, suggest important gender differences in narcolepsy expression. Specifically, these recent data corroborate previous findings in mice demonstrating that females show more cataplexy events and more total cataplexy expression than males. Moreover, in the neurotoxic DTA mouse model, females show earlier onset of cataplexy expression than males during active Hcrt cell loss. Finally, females show a doubling of cataplexy during estrous compared to other phases of the estrous cycle. These findings are reviewed in the broader context of prior published literature, including reported gender differences in Hcrt expression and hormonal influences on sleep and wakefulness. Although similar findings have not been reported in humans, a systematic evaluation of gender differences in human narcolepsy has yet to be performed. Taken together, these animal data suggest that more research exploring gender differences in human narcolepsy is warranted.
Collapse
Affiliation(s)
- Markus H Schmidt
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland.,Ohio Sleep Medicine Institute, 4975 Bradenton Ave., Dublin, Ohio, 43017, Switzerland
| | | |
Collapse
|