1
|
Gabb VG, Blackman J, Morrison HD, Biswas B, Li H, Turner N, Russell GM, Greenwood R, Jolly A, Trender W, Hampshire A, Whone A, Coulthard E. Remote Evaluation of Sleep and Circadian Rhythms in Older Adults With Mild Cognitive Impairment and Dementia: Protocol for a Feasibility and Acceptability Mixed Methods Study. JMIR Res Protoc 2024; 13:e52652. [PMID: 38517469 PMCID: PMC10998181 DOI: 10.2196/52652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Sleep disturbances are a potentially modifiable risk factor for neurodegenerative dementia secondary to Alzheimer disease (AD) and Lewy body disease (LBD). Therefore, we need to identify the best methods to study sleep in this population. OBJECTIVE This study will assess the feasibility and acceptability of various wearable devices, smart devices, and remote study tasks in sleep and cognition research for people with AD and LBD. METHODS We will deliver a feasibility and acceptability study alongside a prospective observational cohort study assessing sleep and cognition longitudinally in the home environment. Adults aged older than 50 years who were diagnosed with mild to moderate dementia or mild cognitive impairment (MCI) due to probable AD or LBD and age-matched controls will be eligible. Exclusion criteria include lack of capacity to consent to research, other causes of MCI or dementia, and clinically significant sleep disorders. Participants will complete a cognitive assessment and questionnaires with a researcher and receive training and instructions for at-home study tasks across 8 weeks. At-home study tasks include remote sleep assessments using wearable devices (electroencephalography headband and actigraphy watch), app-based sleep diaries, online cognitive assessments, and saliva samples for melatonin- and cortisol-derived circadian markers. Feasibility outcomes will be assessed relating to recruitment and retention, data completeness, data quality, and support required. Feedback on acceptability and usability will be collected throughout the study period and end-of-study interviews will be analyzed using thematic analysis. RESULTS Recruitment started in February 2022. Data collection is ongoing, with final data expected in February 2024 and data analysis and publication of findings scheduled for the summer of 2024. CONCLUSIONS This study will allow us to assess if remote testing using smart devices and wearable technology is a viable alternative to traditional sleep measurements, such as polysomnography and questionnaires, in older adults with and without MCI or dementia due to AD or LBD. Understanding participant experience and the barriers and facilitators to technology use for research purposes and remote research in this population will assist with the development of, recruitment to, and retention within future research projects studying sleep and cognition outside of the clinic or laboratory. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/52652.
Collapse
Affiliation(s)
- Victoria Grace Gabb
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Neurology Department, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Jonathan Blackman
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Neurology Department, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Hamish Duncan Morrison
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Neurology Department, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Bijetri Biswas
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Haoxuan Li
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Neurology Department, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
- King's College Hospital, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Nicholas Turner
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | - Rosemary Greenwood
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Research & Innovation, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Amy Jolly
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - William Trender
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alan Whone
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Neurology Department, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Elizabeth Coulthard
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Neurology Department, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| |
Collapse
|
2
|
Liu F, Schrack J, Wanigatunga SK, Rabinowitz JA, He L, Wanigatunga AA, Zipunnikov V, Simonsick EM, Ferrucci L, Spira AP. Comparison of sleep parameters from wrist-worn ActiGraph and Actiwatch devices. Sleep 2024; 47:zsad155. [PMID: 37257489 PMCID: PMC10851854 DOI: 10.1093/sleep/zsad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Sleep and physical activity, two important health behaviors, are often studied independently using different accelerometer types and body locations. Understanding whether accelerometers designed for monitoring each behavior can provide similar sleep parameter estimates may help determine whether one device can be used to measure both behaviors. Three hundred and thirty one adults (70.7 ± 13.7 years) from the Baltimore Longitudinal Study of Aging wore the ActiGraph GT9X Link and the Actiwatch 2 simultaneously on the non-dominant wrist for 7.0 ± 1.6 nights. Total sleep time (TST), wake after sleep onset (WASO), sleep efficiency, number of wake bouts, mean wake bout length, and sleep fragmentation index (SFI) were extracted from ActiGraph using the Cole-Kripke algorithm and from Actiwatch using the software default algorithm. These parameters were compared using paired t-tests, Bland-Altman plots, and Deming regression models. Stratified analyses were performed by age, sex, and body mass index (BMI). Compared to the Actiwatch, the ActiGraph estimated comparable TST and sleep efficiency, but fewer wake bouts, longer WASO, longer wake bout length, and higher SFI (all p < .001). Both devices estimated similar 1-min and 1% differences between participants for TST and SFI (β = 0.99, 95% CI: 0.95, 1.03, and 0.91, 1.13, respectively), but not for other parameters. These differences varied by age, sex, and/or BMI. The ActiGraph and the Actiwatch provide comparable absolute and relative estimates of TST, but not other parameters. The discrepancies could result from device differences in movement collection and/or sleep scoring algorithms. Further comparison and calibration is required before these devices can be used interchangeably.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah K Wanigatunga
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jill A Rabinowitz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Linchen He
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vadim Zipunnikov
- Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Adam P Spira
- Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Cook JD, Malik A, Plante DT, Norton D, Langhough Koscik R, Du L, Bendlin BB, Kirmess KM, Holubasch MS, Meyer MR, Venkatesh V, West T, Verghese PB, Yarasheski KE, Thomas KV, Carlsson CM, Asthana S, Johnson SC, Gleason CE, Zuelsdorff M. Associations of sleep duration and daytime sleepiness with plasma amyloid beta and cognitive performance in cognitively unimpaired, middle-aged and older African Americans. Sleep 2024; 47:zsad302. [PMID: 38011629 PMCID: PMC10782500 DOI: 10.1093/sleep/zsad302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/01/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY OBJECTIVES Given the established racial disparities in both sleep health and dementia risk for African American populations, we assess cross-sectional and longitudinal associations of self-report sleep duration (SRSD) and daytime sleepiness with plasma amyloid beta (Aβ) and cognition in an African American (AA) cohort. METHODS In a cognitively unimpaired sample drawn from the African Americans Fighting Alzheimer's in Midlife (AA-FAiM) study, data on SRSD, Epworth Sleepiness Scale, demographics, and cognitive performance were analyzed. Aβ40, Aβ42, and the Aβ42/40 ratio were quantified from plasma samples. Cross-sectional analyses explored associations between baseline predictors and outcome measures. Linear mixed-effect regression models estimated associations of SRSD and daytime sleepiness with plasma Aβ and cognitive performance levels and change over time. RESULTS One hundred and forty-seven participants comprised the cross-sectional sample. Baseline age was 63.2 ± 8.51 years. 69.6% self-identified as female. SRSD was 6.4 ± 1.1 hours and 22.4% reported excessive daytime sleepiness. The longitudinal dataset included 57 participants. In fully adjusted models, neither SRSD nor daytime sleepiness is associated with cross-sectional or longitudinal Aβ. Associations with level and trajectory of cognitive test performance varied by measure of sleep health. CONCLUSIONS SRSD was below National Sleep Foundation recommendations and daytime sleepiness was prevalent in this cohort. In the absence of observed associations with plasma Aβ, poorer self-reported sleep health broadly predicted poorer cognitive function but not accelerated decline. Future research is necessary to understand and address modifiable sleep mechanisms as they relate to cognitive aging in AA at disproportionate risk for dementia. CLINICAL TRIAL INFORMATION Not applicable.
Collapse
Affiliation(s)
- Jesse D Cook
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
| | - Ammara Malik
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
| | - David T Plante
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Derek Norton
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | - Tim West
- C2N Diagnostics, St. Louis, MO, USA
| | | | | | - Kevin V Thomas
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Carey E Gleason
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- School of Nursing, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Blackman J, Morrison HD, Gabb V, Biswas B, Li H, Turner N, Jolly A, Trender W, Hampshire A, Whone A, Coulthard E. Remote evaluation of sleep to enhance understanding of early dementia due to Alzheimer's Disease (RESTED-AD): an observational cohort study protocol. BMC Geriatr 2023; 23:590. [PMID: 37742001 PMCID: PMC10518099 DOI: 10.1186/s12877-023-04288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sleep and circadian rhythm disorders are well recognised in both AD (Alzheimer's Disease) dementia and MCI-AD (Mild Cognitive Impairment due to Alzheimer's Disease). Such abnormalities include insomnia, excessive daytime sleepiness, decreased sleep efficiency, increased sleep fragmentation and sundowning. Enhancing understanding of sleep abnormalities may unveil targets for intervention in sleep, a promising approach given hypotheses that sleep disorders may exacerbate AD pathological progression and represent a contributory factor toward impaired cognitive performance and worse quality of life. This may also permit early diagnosis of AD pathology, widely acknowledged as a pre-requisite for future disease-modifying therapies. This study aims to bridge the divide between in-laboratory polysomnographic studies which allow for rich characterisation of sleep but in an unnatural setting, and naturalistic studies typically approximating sleep through use of non-EEG wearable devices. It is also designed to record sleep patterns over a 2 month duration sufficient to capture both infradian rhythm and compensatory responses following suboptimal sleep. Finally, it harnesses an extensively phenotyped population including with AD blood biomarkers. Its principal aims are to improve characterisation of sleep and biological rhythms in individuals with AD, particularly focusing on micro-architectural measures of sleep, compensatory responses to suboptimal sleep and the relationship between sleep parameters, biological rhythms and cognitive performance. METHODS/DESIGN This observational cohort study has two arms (AD-MCI / mild AD dementia and aged-matched healthy adults). Each participant undergoes a baseline visit for collection of demographic, physiological and neuropsychological information utilising validated questionnaires. The main study period involves 7 nights of home-based multi-channel EEG sleep recording nested within an 8-week study period involving continuous wrist-worn actigraphy, sleep diaries and regular brief cognitive tests. Measurement of sleep parameters will be at home thereby obtaining a real-world, naturalistic dataset. Cognitive testing will be repeated at 6 months to stratify participants by longitudinal disease progression. DISCUSSION This study will generate new insights particularly in micro-architectural measures of sleep, circadian patterns and compensatory sleep responses in a population with and without AD neurodegenerative change. It aims to enhance standards of remotely based sleep research through use of a well-phenotyped population and advanced sleep measurement technology.
Collapse
Affiliation(s)
- Jonathan Blackman
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Hamish Duncan Morrison
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Victoria Gabb
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Bijetri Biswas
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
| | - Haoxuan Li
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Nicholas Turner
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
| | - Amy Jolly
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - William Trender
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Alan Whone
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Elizabeth Coulthard
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
- Bristol Medical School, Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB UK
| |
Collapse
|
5
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|