1
|
Rodríguez-Labrada R, Canales-Ochoa N, Galicia-Polo MDL, Cruz-Rivas E, Romanzetti S, Peña-Acosta A, Estupiñán-Rodríguez A, Vázquez-Mojena Y, Dogan I, Auburger G, Reetz K, Velázquez-Pérez L. Structural Brain Correlates of Sleep Microstructure in Spinocerebellar Ataxia Type 2 and its Role on Clinical Phenotype. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1839-1847. [PMID: 38438827 DOI: 10.1007/s12311-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
The influence of brain atrophy on sleep microstructure in Spinocerebellar Ataxias (SCAs) has not been extensively explored limiting the use of these sleep traits as surrogate biomarkers of neurodegeneration and clinical phenotype. The objective of the study is to explore the relationship between sleep microstructure and brain atrophy in SCA2 and its role in the clinical phenotype. Fourteen SCA2 mutation carriers (7 pre-manifest and 7 manifest subjects) underwent polysomnographic, structural MRI, and clinical assessments. Particularly, markers of REM and non-REM sleep microstructure, measures of cerebellar and brainstem atrophy, and clinical scores were analyzed through correlation and mediation analyses. The sleep spindle activity exhibited a negative correlation with the number of trials required to complete the verbal memory test (VMT), and a positive correlation with the cerebellar volume, but the significance of the latter correlation did not survive multiple testing corrections. However, the causal mediation analyses unveiled that sleep spindle activity significantly mediates the association between cerebellar atrophy and VMT performance. Regarding REM sleep, both phasic EMG activity and REM sleep without atonia exhibited significant associations with pontine atrophy and disease severity measures. However, they did not demonstrate a causal mediation effect between the atrophy measures and disease severity. Our study provides evidence about the association of the pontocerebellar atrophy with sleep microstructure in SCA2 offering insights into the cerebellar involvement in cognition via the control of the sleep spindle activity. Therefore, our findings may help to understand the disease pathogenesis and to better characterize sleep microstructure parameters as disease biomarkers.Clinical trial registration number (TRN): No applicable.
Collapse
Affiliation(s)
- Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba.
- Cuban Centre for Neurosciences, 190 St, between 25 St & 27 St, 11300, Playa, Havana, Cuba.
| | - Nalia Canales-Ochoa
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba
| | | | | | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 3052074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - Arnoy Peña-Acosta
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba
| | - Annelié Estupiñán-Rodríguez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba
| | - Yaimeé Vázquez-Mojena
- Cuban Centre for Neurosciences, 190 St, between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 3052074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - Georg Auburger
- Clinic of Neurology, Experimental Neurology, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 3052074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba.
- Cuban Academy of Sciences, Cuba St 460, Between Teniente Rey & Amargura , 10100, Habana Vieja, Havana, Cuba.
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba.
- Faculty of Chemistry, University of Havana, Zapata St Between G St & Carlitos Aguirre St., 10400, Plaza de La Revolución, Havana, Cuba.
| |
Collapse
|
2
|
Mutti C, Baldelli L, Cortelli P, Parrino L, Provini F. Agrypnia excitata: a human model to explore the derailment of sleep-wake cycle integrated control. J Sleep Res 2024:e14324. [PMID: 39223838 DOI: 10.1111/jsr.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The commemoration of the 70th anniversary of rapid eye movement sleep discovery offers a unique possibility to reassess the peculiar organic condition of agrypnia excitata. Agrypnia excitata is characterized by a severe loss of sleep leading to a complete derangement of physiological sleep-wake cycle and body homeostasis. Agrypnia excitata is a definite clinico-neurophysiological condition characterized by: (1) slow-wave sleep loss with disruption of sleepwake cycle; (2) a 24-hr motor and autonomic overactivity; and (3) peculiar episodes of oneiric stupor. Agrypnia excitata may happen within different pathophysiologies, such as delirium tremens, Morvan's syndrome and fatal familial insomnia, suggesting some general reflections on the composition and function of the cerebral neuronal network generating wake and sleep behaviour and regulating body homeostasis, with a focus on rapid eye movement sleep.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Parma, Italy
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Parma, Italy
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Cesari M, Portscher A, Stefani A, Angerbauer R, Ibrahim A, Brandauer E, Feuerstein S, Egger K, Högl B, Rodriguez-Sanchez A. Machine Learning Predicts Phenoconversion from Polysomnography in Isolated REM Sleep Behavior Disorder. Brain Sci 2024; 14:871. [PMID: 39335367 PMCID: PMC11430259 DOI: 10.3390/brainsci14090871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of alpha-synucleinopathies. This study aimed at developing a fully-automated machine learning framework for the prediction of phenoconversion in patients with iRBD by using data recorded during polysomnography (PSG). A total of 66 patients with iRBD were included, of whom 18 converted to an overt alpha-synucleinopathy within 2.7 ± 1.0 years. For each patient, a baseline PSG was available. Sleep stages were scored automatically, and time and frequency domain features were derived from electromyography (EMG) and electroencephalography (EEG) signals in REM and non-REM sleep. Random survival forest was employed to predict the time to phenoconversion, using a four-fold cross-validation scheme and by testing several combinations of features. The best test performances were obtained when considering EEG features in REM sleep only (Harrel's C-index: 0.723 ± 0.113; Uno's C-index: 0.741 ± 0.11; integrated Brier score: 0.174 ± 0.06). Features describing EEG slowing had high importance for the machine learning model. This is the first study employing machine learning applied to PSG to predict phenoconversion in patients with iRBD. If confirmed in larger cohorts, these findings might contribute to improving the design of clinical trials for neuroprotective treatments.
Collapse
Affiliation(s)
- Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andrea Portscher
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Raphael Angerbauer
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elisabeth Brandauer
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Simon Feuerstein
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kristin Egger
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
4
|
Sadoc M, Clairembault T, Coron E, Berthomier C, Le Dily S, Vavasseur F, Pavageau A, St Louis EK, Péréon Y, Neunlist M, Derkinderen P, Leclair-Visonneau L. Wake and non-rapid eye movement sleep dysfunction is associated with colonic neuropathology in Parkinson's disease. Sleep 2024; 47:zsad310. [PMID: 38156524 DOI: 10.1093/sleep/zsad310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
STUDY OBJECTIVES The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology initially propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels, a disease course presumed to likely occur in PD with rapid eye movement sleep behavior disorder (RBD). We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. METHODS In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative analysis of NREM sleep and wake electroencephalography (EEG), confirmed it with automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined probable Arizona PD stage classifications based on sleep and wake EEG features. RESULTS The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to probable Arizona PD stage classifications. CONCLUSIONS Colonic PASH is strongly associated with widespread brain sleep and wake dysfunction, suggesting an extensive diffusion of the pathologic process in PD. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. CLINICAL TRIAL Name: SYNAPark, URL: https://clinicaltrials.gov/study/NCT01748409, registration: NCT01748409.
Collapse
Affiliation(s)
- Mathilde Sadoc
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- Department of Neurology, CHU Nantes, Nantes, France
| | - Thomas Clairembault
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Emmanuel Coron
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Inserm, CIC-04, Nantes, France
| | | | | | - Fabienne Vavasseur
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Inserm, CIC-04, Nantes, France
| | - Albane Pavageau
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
| | - Erik K St Louis
- Mayo Sleep Behavior and Neurophysiology Research Laboratory, Department of Neurology, Rochester, MN, USA
- Mayo Center for Sleep Medicine, Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Yann Péréon
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- Nantes Université, Nantes, France
| | - Michel Neunlist
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Pascal Derkinderen
- Department of Neurology, CHU Nantes, Nantes, France
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- Inserm, CIC-04, Nantes, France
| | - Laurène Leclair-Visonneau
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- Inserm, CIC-04, Nantes, France
| |
Collapse
|
5
|
Bergmann M, Högl B, Stefani A. Clinical neurophysiology of REM parasomnias: Diagnostic aspects and insights into pathophysiology. Clin Neurophysiol Pract 2024; 9:53-62. [PMID: 38328386 PMCID: PMC10847011 DOI: 10.1016/j.cnp.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/17/2023] [Accepted: 10/22/2023] [Indexed: 02/09/2024] Open
Abstract
Parasomnias are due to a transient unstable state dissociation during entry into sleep, within sleep, or during arousal from sleep, and manifest with abnormal sleep related behaviors, perceptions, emotions, dreams, and autonomic nervous system activity. Rapid eye movement (REM) parasomnias include REM sleep behavior disorder (RBD), isolated recurrent sleep paralysis and nightmare disorder. Neurophysiology is key for diagnosing these disorders and provides insights into their pathophysiology. RBD is very well characterized from a neurophysiological point of view, also thank to the fact that polysomnography is needed for the diagnosis. Diagnostic criteria are provided by the American Academy of Sleep Medicine and video-polysomnography guidelines for the diagnosis by the International REM Sleep Behavior Disorder Study Group. Differences between the two sets of criteria are presented and discussed. Availability of polysomnography in RBD provides data on sleep electroencephalography (EEG), electrooculography (EOG) and electromyography (EMG). Sleep EEG in RBD shows e.g. changes in delta and theta power, in sleep spindles and K complexes. EMG during REM sleep is essential for RBD diagnosis and is an important neurodegeneration biomarker. RBD patients present alterations also in wake EEG, autonomic function, evoked potentials, and transcranial magnetic stimulation. Clinical neurophysiological data on recurrent isolated sleep paralysis and nightmare disorder are scant. The few available data provide insights into the pathophysiology of these disorders, demonstrating a state dissociation in recurrent isolated sleep paralysis and suggesting alterations in sleep macro- and microstructure as well as autonomic changes in nightmare disorder.
Collapse
Affiliation(s)
- Melanie Bergmann
- Department of Neurology, Sleep Laboratory, Medical University Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Sleep Laboratory, Medical University Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Sleep Laboratory, Medical University Innsbruck, Austria
- Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
6
|
Acharya JN. REM parasomnias: Straddling the sleep-wake line. Clin Neurophysiol Pract 2024; 9:51-52. [PMID: 38328387 PMCID: PMC10847008 DOI: 10.1016/j.cnp.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Jayant N. Acharya
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
7
|
Sadoc M, Clairembault T, Coron E, Berthomier C, Le Dily S, Vavasseur F, Pavageau A, St Louis EK, Péréon Y, Neunlist M, Derkinderen P, Leclair-Visonneau L. Wake and non-rapid eye movement sleep dysfunction is associated with colonic neuropathology in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.03.23296499. [PMID: 37873268 PMCID: PMC10593030 DOI: 10.1101/2023.10.03.23296499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Study Objectives The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology that propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels. This disease course may also be the most likely in PD with rapid eye movement sleep behavior disorder (RBD). Objectives We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. Methods In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative and automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined Braak and Arizona stage classifications for PD severity based on sleep and wake electroencephalographic features. Results The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to presumed PD Braak and Arizona stage classifications. Conclusions Colonic PASH in PD is strongly associated with widespread brain sleep and wake dysfunction, pointing toward likely extensive diffusion of the pathological process in the presumptive body-first PD phenotype. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. Statement of Significance The presence of gut synucleinopathy in Parkinson's disease can be linked to the body-first hypothesis in its pathophysiology. This study, performed in a cohort of 43 patients with Parkinson's disease that underwent clinical assessment, rectosigmoidoscopy and polysomnography, provides evidence that colonic neuropathology in Parkinson's disease is associated with widespread brain dysfunction, as evaluated by wake and non-rapid eye movement sleep polysomnographic markers. Our results support the assumption of an extensive diffusion of the pathological process to diencephalic and neocortical structures in the presumptive body-first phenotype. They also suggest the use of routine polysomnography in phenotyping patients with Parkinson's disease. Future studies should investigate the brain diffusion pattern and its sleep markers in the hypothesized brain-first phenotype of Parkinson's disease.
Collapse
|
8
|
Figorilli M, Meloni M, Lanza G, Casaglia E, Lecca R, Saibene FL, Congiu P, Puligheddu M. Considering REM Sleep Behavior Disorder in the Management of Parkinson's Disease. Nat Sci Sleep 2023; 15:333-352. [PMID: 37180094 PMCID: PMC10167974 DOI: 10.2147/nss.s266071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is the result of the loss of physiological inhibition of muscle tone during REM sleep, characterized by dream-enacting behavior and widely recognized as a prodromal manifestation of alpha-synucleinopathies. Indeed, patients with isolated RBD (iRBD) have an extremely high estimated risk to develop a neurodegenerative disease after a long follow up. Nevertheless, in comparison with PD patients without RBD (PDnoRBD), the occurrence of RBD in the context of PD (PDRBD) seems to identify a unique, more malignant phenotype, characterized by a more severe burden of disease in terms of both motor and non-motor symptoms and increased risk for cognitive decline. However, while some medications (eg, melatonin, clonazepam, etc.) and non-pharmacological options have been found to have some therapeutic benefits on RBD there is no available treatment able to modify the disease course or, at least, slow down the neurodegenerative process underlying phenoconversion. In this scenario, the long prodromal phase may allow an early therapeutic window and, therefore, the identification of multimodal biomarkers of disease onset and progression is becoming increasingly crucial. To date, several clinical (motor, cognitive, olfactory, visual, and autonomic features) neurophysiological, neuroimaging, biological (biofluids or tissue biopsy), and genetic biomarkers have been identified and proposed, also in combination, as possible diagnostic or prognostic markers, along with a potential role for some of them as outcome measures and index of treatment response. In this review, we provide an insight into the present knowledge on both existing and future biomarkers of iRBD and highlight the difference with PDRBD and PDnoRBD, including currently available treatment options.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elisa Casaglia
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Doppler CEJ, Smit J, Hommelsen M, Seger A, Okkels N, Horsager J, Kinnerup M, Hansen AK, Fedorova TD, Knudsen K, Otto M, Nahimi A, Fink GR, Borghammer P, Sommerauer M. Disruption of Sleep Microarchitecture Is a Sensitive and Early Marker of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2555-2560. [PMID: 36189604 DOI: 10.3233/jpd-223442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although sleep disturbances are highly prevalent in patients with Parkinson's disease, sleep macroarchitecture metrics show only minor changes. OBJECTIVE To assess alterations of the cyclic alternating pattern (CAP) as a critical feature of sleep microarchitecture in patients with prodromal, recent, and established Parkinson's disease. METHODS We evaluated overnight polysomnography for classic sleep macroarchitecture and CAP metrics in 68 patients at various disease stages and compared results to 22 age- and sex-matched controls. RESULTS Already at the prodromal stage, patients showed a significantly reduced CAP rate as a central characteristic of sleep microarchitecture. Temporal characteristics of CAP showed a gradual change over disease stages and correlated with motor performance. In contrast, the sleep macroarchitecture metrics did not differ between groups. CONCLUSION Data suggest that alterations of sleep microarchitecture are an early and more sensitive characteristic of Parkinson's disease than changes in sleep macroarchitecture.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
| | - Julia Smit
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
| | - Maximilian Hommelsen
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Aline Seger
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
| | - Niels Okkels
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Kinnerup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Marit Otto
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Adjmal Nahimi
- Department of Neurology, Rehabilitation Medicine, Memory Disorders, and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Gorgoni M, Galbiati A. Non-REM sleep electrophysiology in REM sleep behaviour disorder: A narrative mini-review. Neurosci Biobehav Rev 2022; 142:104909. [DOI: 10.1016/j.neubiorev.2022.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
|
11
|
Parrino L, Halasz P, Szucs A, Thomas RJ, Azzi N, Rausa F, Pizzarotti S, Zilioli A, Misirocchi F, Mutti C. Sleep medicine: Practice, challenges and new frontiers. Front Neurol 2022; 13:966659. [PMID: 36313516 PMCID: PMC9616008 DOI: 10.3389/fneur.2022.966659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep medicine is an ambitious cross-disciplinary challenge, requiring the mutual integration between complementary specialists in order to build a solid framework. Although knowledge in the sleep field is growing impressively thanks to technical and brain imaging support and through detailed clinic-epidemiologic observations, several topics are still dominated by outdated paradigms. In this review we explore the main novelties and gaps in the field of sleep medicine, assess the commonest sleep disturbances, provide advices for routine clinical practice and offer alternative insights and perspectives on the future of sleep research.
Collapse
Affiliation(s)
- Liborio Parrino
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- *Correspondence: Liborio Parrino
| | - Peter Halasz
- Szentagothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szucs
- Department of Behavioral Sciences, National Institute of Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Nicoletta Azzi
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Chong-Wen W, Sha-Sha L, Xu E. Predictors of rapid eye movement sleep behavior disorder in patients with Parkinson’s disease based on random forest and decision tree. PLoS One 2022; 17:e0269392. [PMID: 35709163 PMCID: PMC9202951 DOI: 10.1371/journal.pone.0269392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Sleep disorders related to Parkinson’s disease (PD) have recently attracted increasing attention, but there are few clinical reports on the correlation of Parkinson’s disease patients with rapid eye movement (REM) sleep behavior disorder (RBD). Therefore, this study conducted a cognitive function examination for Parkinson’s disease patients and discussed the application effect of three algorithms in the screening of influencing factors and risk prediction effects. Methods Three algorithms (logistic regression, machine learning-based regression trees and random forest) were used to establish a prediction model for PD-RBD patients, and the application effects of the three algorithms in the screening of influencing factors and the risk prediction of PD-RBD were discussed. Results The subjects included 169 patients with Parkinson’s disease (Parkinson’s disease with RBD [PD-RBD] = 69 subjects; Parkinson’s disease without RBD [PD-nRBD] = 100 subjects). This study compared the predictive performance of RF, decision tree and logistic regression, selected a final model with the best model performance and proposed the importance of variables in the final model. After the analysis, the accuracy of RF (83.05%) was better than that of the other models (decision tree = 75.10%, logistic regression = 71.62%). PQSI, Scopa-AUT score, MoCA score, MMSE score, AGE, LEDD, PD-course, UPDRS total score, ESS score, NMSQ, disease type, RLSRS, HAMD, UPDRS III and PDOnsetage are the main variables for predicting RBD, along with increased weight. Among them, PQSI is the most important factor. The prediction model of Parkinson’s disease RBD that was established in this study will help in screening out predictive factors and in providing a reference for the prognosis and preventive treatment of PD-RBD patients. Conclusions The random forest model had good performance in the prediction and evaluation of PD-RBD influencing factors and was superior to decision tree and traditional logistic regression models in many aspects, which can provide a reference for the prognosis and preventive treatment of PD-RBD patients.
Collapse
Affiliation(s)
- Wu Chong-Wen
- Department of Medical, Huzhou Normal University, Huzhou, Zhejiang Province, China
| | - Li Sha-Sha
- Department of Medical, Huzhou Normal University, Huzhou, Zhejiang Province, China
| | - E. Xu
- Department of Medical, Huzhou Normal University, Huzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
13
|
de Natale ER, Wilson H, Politis M. Predictors of RBD progression and conversion to synucleinopathies. Curr Neurol Neurosci Rep 2022; 22:93-104. [PMID: 35274191 PMCID: PMC9001233 DOI: 10.1007/s11910-022-01171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Purpose of review Rapid eye movement (REM) sleep behaviour disorder (RBD) is considered the expression of the initial neurodegenerative process underlying synucleinopathies and constitutes the most important marker of their prodromal phase. This article reviews recent research from longitudinal research studies in isolated RBD (iRBD) aiming to describe the most promising progression biomarkers of iRBD and to delineate the current knowledge on the level of prediction of future outcome in iRBD patients at diagnosis. Recent findings Longitudinal studies revealed the potential value of a variety of biomarkers, including clinical markers of motor, autonomic, cognitive, and olfactory symptoms, neurophysiological markers such as REM sleep without atonia and electroencephalography, genetic and epigenetic markers, cerebrospinal fluid and serum markers, and neuroimaging markers to track the progression and predict phenoconversion. To-date the most promising neuroimaging biomarker in iRBD to aid the prediction of phenoconversion is striatal presynaptic striatal dopaminergic dysfunction. Summary There is a variety of potential biomarkers for monitoring disease progression and predicting iRBD conversion into synucleinopathies. A combined multimodal biomarker model could offer a more sensitive and specific tool. Further longitudinal studies are warranted to iRBD as a high-risk population for early neuroprotective interventions and disease-modifying therapies.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.
| |
Collapse
|
14
|
Niederschweiberer J, Schumacher NU, Kumpfmüller D, Lingg C, Graf S, Ikenberg B, Mühlau M, Lingor P, Hemmer B, Knier B. [The anti-IgLON5 syndrome in clinical neurology-Report of two cases]. DER NERVENARZT 2022; 93:1247-1249. [PMID: 35704066 PMCID: PMC9718859 DOI: 10.1007/s00115-022-01344-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Johanna Niederschweiberer
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland.
| | - Nicolas U Schumacher
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | - Daniela Kumpfmüller
- Klinik für Anästhesiologie und Intensivmedizin, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Charlotte Lingg
- Klinik für Anästhesiologie und Intensivmedizin, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Simone Graf
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Benno Ikenberg
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | - Mark Mühlau
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | - Paul Lingor
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | - Bernhard Hemmer
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
- Munich Cluster for Systems Neurology (SyNergy), München, Deutschland
| | - Benjamin Knier
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| |
Collapse
|
15
|
Mutti C, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Parrino L. Sleep and brain evolution across the human lifespan: A mutual embrace. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:938012. [PMID: 36926070 PMCID: PMC10013002 DOI: 10.3389/fnetp.2022.938012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022]
Abstract
Sleep can be considered a window to ascertain brain wellness: it dynamically changes with brain maturation and can even indicate the occurrence of concealed pathological processes. Starting from prenatal life, brain and sleep undergo an impressive developmental journey that accompanies human life throughout all its steps. A complex mutual influence rules this fascinating course and cannot be ignored while analysing its evolution. Basic knowledge on the significance and evolution of brain and sleep ontogenesis can improve the clinical understanding of patient's wellbeing in a more holistic perspective. In this review we summarized the main notions on the intermingled relationship between sleep and brain evolutionary processes across human lifespan, with a focus on sleep microstructure dynamics.
Collapse
Affiliation(s)
- Carlotta Mutti
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Francesco Misirocchi
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Alessandro Zilioli
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Marco Spallazzi
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Liborio Parrino
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| |
Collapse
|
16
|
Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021. [PMID: 34942893 DOI: 10.3390/brainsci11121588.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
|
17
|
Figorilli M, Lanza G, Congiu P, Lecca R, Casaglia E, Mogavero MP, Puligheddu M, Ferri R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021; 11:brainsci11121588. [PMID: 34942893 PMCID: PMC8699681 DOI: 10.3390/brainsci11121588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
Affiliation(s)
- Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Patrizia Congiu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Rosamaria Lecca
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Elisa Casaglia
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria P. Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, 27100 Pavia, Italy;
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-0935-936111
| |
Collapse
|
18
|
Miglis MG, Adler CH, Antelmi E, Arnaldi D, Baldelli L, Boeve BF, Cesari M, Dall'Antonia I, Diederich NJ, Doppler K, Dušek P, Ferri R, Gagnon JF, Gan-Or Z, Hermann W, Högl B, Hu MT, Iranzo A, Janzen A, Kuzkina A, Lee JY, Leenders KL, Lewis SJG, Liguori C, Liu J, Lo C, Ehgoetz Martens KA, Nepozitek J, Plazzi G, Provini F, Puligheddu M, Rolinski M, Rusz J, Stefani A, Summers RLS, Yoo D, Zitser J, Oertel WH. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021; 20:671-684. [PMID: 34302789 DOI: 10.1016/s1474-4422(21)00176-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Collapse
Affiliation(s)
- Mitchell G Miglis
- Department of Neurology and Neurological Sciences and Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA, USA.
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurology, DINOGMI, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Baldelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Dall'Antonia
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Nico J Diederich
- Department of Neuroscience, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | | | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Ziv Gan-Or
- The Neuro-Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Rostock, Rostock, Germany
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Annette Janzen
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany
| | | | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Klaus L Leenders
- Department of Nuclear Medicine and Biomedical Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Claudio Liguori
- Sleep Medicine Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Lo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kaylena A Ehgoetz Martens
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; UOC Clinica Neurologica Rete Metropolitana NEUROMET, Bellaria Hospital, Bologna, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michal Rolinski
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, South Korea
| | - Jennifer Zitser
- Department of Neurology and Neurological Sciences, University of California, San Francisco, CA, USA; Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolfgang H Oertel
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany; Institute for Neurogenomics, Helmholtz Center for Health and Environment, München-Neuherberg, Germany
| |
Collapse
|
19
|
Brink-Kjær A, Cesari M, Sixel-Döring F, Mollenhauer B, Trenkwalder C, Mignot E, Sorensen HBD, Jennum P. Arousal Characteristics in Patients with Parkinson's Disease and Isolated Rapid Eye Movement Sleep Behavior Disorder. Sleep 2021; 44:6313215. [PMID: 34214165 DOI: 10.1093/sleep/zsab167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/02/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Patients diagnosed with isolated rapid eye movement (REM) sleep behavior disorder (iRBD) and Parkinson's disease (PD) have altered sleep stability reflecting neurodegeneration in brainstem structures. We hypothesize that neurodegeneration alters the expression of cortical arousals in sleep. METHODS We analyzed polysomnography data recorded from 88 healthy controls (HC), 22 iRBD patients, 82 de novo PD patients without RBD and 32 with RBD (PD+RBD). These patients were also investigated at a 2-year follow-up. Arousals were analyzed using a previously validated automatic system, which used a central EEG lead, electrooculography, and chin electromyography. Multiple linear regression models were fitted to compare group differences at baseline and change to follow-up for arousal index (ArI), shifts in electroencephalographic signals associated with arousals, and arousal chin muscle tone. The regression models were adjusted for known covariates affecting the nature of arousal. RESULTS In comparison to HC, patients with iRBD and PD+RBD showed increased ArI during REM sleep and their arousals showed a significantly lower shift in α-band power at arousals and a higher muscle tone during arousals. In comparison to HC, the PD patients were characterized by a decreased ArI in NREM sleep at baseline. ArI during NREM sleep decreased further at the 2-year follow-up, although not significantly. CONCLUSIONS Patients with PD and iRBD present with abnormal arousal characteristics as scored by an automated method. These abnormalities are likely to be caused by neurodegeneration of the reticular activation system due to alpha-synuclein aggregation.
Collapse
Affiliation(s)
- Andreas Brink-Kjær
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Denmark.,Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Matteo Cesari
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Friederike Sixel-Döring
- Paracelsus-Elena Klinik, Kassel, Germany.,Department of Neurology, Philipps-University Marburg, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena Klinik, Kassel, Germany.,Department of Neurology, University Medical Center Goettingen, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Germany.,Department of Neurosurgery, University Medical Center, Goettingen, Germany
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Helge B D Sorensen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Denmark
| |
Collapse
|
20
|
Migueis DP, Lopes MC, Ignacio PSD, Thuler LCS, Araujo-Melo MH, Spruyt K, Lacerda GCB. A systematic review and meta-analysis of the cyclic alternating pattern across the lifespan. Sleep Med 2021; 85:25-37. [PMID: 34271180 DOI: 10.1016/j.sleep.2021.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cyclic alternating pattern (CAP) is the electroencephalogram (EEG) pattern described as a marker of sleep instability and assessed by NREM transient episodes in sleep EEG. It has been associated with brain maturation. The aim of this review was to evaluate the normative data of CAP parameters according to the aging process in healthy subjects through a systematic review and meta-analysis. METHODS Two authors independently searched databases using PRISMA guidelines. Discrepancies were reconciled by a third reviewer. Subgroup analysis and tests for heterogeneity were conducted. RESULTS Of 286 studies, 10 submitted a total of 168 healthy individuals to CAP analysis. Scoring of CAP can begin at 3 months of life, when K-complexes, delta bursts, or spindles can be recognized. Rate of CAP increased with age, mainly during the first 2 years of life, then decreased in adolescence, and increased in the elderly. The A1 CAP subtype and CAP rate were high in school-aged children during slow-wave sleep (SWS). A1 CAP subtypes were significantly more numerous in adolescents compared with other groups, while the elderly showed the highest amounts of A2 and A3 CAP subtypes. Our meta-analysis registered the lowest CAP rate in infants younger than 2 years old and the highest in the elderly. CONCLUSIONS This review summarized the normative data of CAP in NREM sleep during the aging process. The CAP rate increased with age and sleep depth, especially during SWS. Parameters of CAP may reflect gender hormonal effects and neuroplasticity. More reports on CAP subtypes are needed for their reference values establishment.
Collapse
Affiliation(s)
- D P Migueis
- PPGNEURO, Gaffree and Guinle University Hospital / Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Antonio Pedro University Hospital / Fluminense Federal University, Niterói, Brazil.
| | - M C Lopes
- Child and Adolescent Affective Disorder Program (PRATA), Department and Institute of Psychiatry at University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - P S D Ignacio
- PPGNEURO, Gaffree and Guinle University Hospital / Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L C S Thuler
- National Cancer Institute, Rio de Janeiro, Brazil
| | - M H Araujo-Melo
- PPGNEURO, Gaffree and Guinle University Hospital / Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - K Spruyt
- INSERM, Université de Paris, NeuroDiderot, France
| | - G C B Lacerda
- PPGNEURO, Gaffree and Guinle University Hospital / Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Abstract
Sleep is a complex brain state with fundamental relevance for cognitive functions, synaptic plasticity, brain resilience, and autonomic balance. Sleep pathologies may interfere with cerebral circuit organization, leading to negative consequences and favoring the development of neurologic disorders. Conversely, the latter can interfere with sleep functions. Accordingly, assessment of sleep quality is always recommended in the diagnosis of patients with neurologic disorders and during neurorehabilitation programs. This review investigates the complex interplay between sleep and brain pathologies, focusing on diseases in which the association with sleep disturbances is commonly overlooked and whereby major benefits may derive from their proper management.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Francesco Rausa
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| |
Collapse
|
22
|
Zimansky L, Muntean ML, Leha A, Mollenhauer B, Trenkwalder C, Sixel-Döring F. Incidence and Progression of Rapid Eye Movement Behavior Disorder in Early Parkinson's Disease. Mov Disord Clin Pract 2021; 8:534-540. [PMID: 33977115 PMCID: PMC8088113 DOI: 10.1002/mdc3.13168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 01/21/2023] Open
Abstract
Background Rapid eye movement (REM) sleep behavior disorder (RBD) is associated with neurodegenerative diseases; however, few longitudinal studies assess the individual evolution of RBD and REM sleep without atonia (RWA) in Parkinson's disease (PD). Objectives We aimed to evaluate RBD and RWA changes over time as well as potentially influential factors. Methods RBD and RWA were analyzed using video‐supported polysomnography (vPSG) in initially de novo PD patients at baseline and every 2 years for a total of 6 years. The influence of time, age, sex, levodopa equivalent daily dose (LEDD), unified Parkinson's disease rating scale (UPDRS) sum scores, benzodiazepine intake, Mini‐Mental State Examination (MMSE) total scores, and dyskinesia on RWA were investigated using mixed‐effect models to account for intra‐individual correlations. Results After 6 years, vPSG data were available from 98 of the initial 159 de novo PD patients. RBD prevalence increased from 25% at baseline to 52%. Of the 31 PD patients with RBD and valid vPSGs at all time‐points, RWA increased from an average of 19% at baseline to 41% at 6‐year follow‐up modeled to grow by 29.7% every 2 years (P < 0.001). Time was an independent factor (P < 0.001) for RWA increase. Age was an independent factor influencing RWA increase (P = 0.04). Sex, LEDD, UPDRS sum scores, benzodiazepines, MMSE total scores, and dyskinesia did not have any significant influence. Conclusions RBD and RWA increased significantly over time in PD; time and age were independent factors in a prospective cohort. RBD and RWA can be considered PD progression markers.
Collapse
Affiliation(s)
- Larissa Zimansky
- Department of Neurosurgery University Medical Center Göttingen Germany.,Paracelsus-Elena Klinik Kassel Germany
| | | | - Andreas Leha
- Department of Medical Statistics University Medical Center Göttingen Germany
| | - Brit Mollenhauer
- Paracelsus-Elena Klinik Kassel Germany.,Department of Neurology University Medical Center Göttingen Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery University Medical Center Göttingen Germany.,Paracelsus-Elena Klinik Kassel Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena Klinik Kassel Germany.,Department of Neurology Philipps-University Marburg Germany
| |
Collapse
|
23
|
Doppler CEJ, Smit JAM, Hommelsen M, Seger A, Horsager J, Kinnerup MB, Hansen AK, Fedorova TD, Knudsen K, Otto M, Nahimi A, Borghammer P, Sommerauer M. Microsleep disturbances are associated with noradrenergic dysfunction in Parkinson's disease. Sleep 2021; 44:6145123. [PMID: 33608699 DOI: 10.1093/sleep/zsab040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES Parkinson's disease (PD) commonly involves degeneration of sleep-wake regulating brainstem nuclei; likewise, sleep-wake disturbances are highly prevalent in PD patients. As polysomnography macroparameters typically show only minor changes in PD, we investigated sleep microstructure, particularly cyclic alternating pattern (CAP), and its relation to alterations of the noradrenergic system in these patients. METHODS We analysed 27 PD patients and 13 healthy control (HC) subjects who underwent over-night polysomnography and 11C-MeNER positron emission tomography for evaluation of noradrenaline transporter density. Sleep macroparameters as well as CAP metrics were evaluated according to the consensus statement from 2001. Statistical analysis comprised group comparisons and correlation analysis of CAP metrics with clinical characteristics of PD patients as well as noradrenaline transporter density. RESULTS PD patients and HC subjects were comparable in demographic characteristics (age, sex, body mass index) and polysomnography macroparameters. CAP rate as well as A index differed significantly between groups, with PD patients having a lower CAP rate (46.7 ± 6.6% versus 38.0 ± 11.6%, p = 0.015) and lower A index (49.0 ± 8.7/hour versus 40.1 ± 15.4/hour, p = 0.042). In PD patients, both CAP metrics correlated significantly with diminished noradrenaline transporter density in arousal prompting brainstem nuclei (locus coeruleus, raphe nuclei) as well as arousal propagating brain structures like thalamus and bitemporal cortex. CONCLUSIONS Sleep microstructure is more severely altered than sleep macrostructure in PD patients and is associated with widespread dysfunction of the noradrenergic arousal system.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Julia A M Smit
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
| | - Maximilian Hommelsen
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Aline Seger
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Marit Otto
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Mutti C, Bernabè G, Barozzi N, Ciliento R, Trippi I, Pedrazzi G, Azzi N, Parrino L. Commonalities and Differences in NREM Parasomnias and Sleep-Related Epilepsy: Is There a Continuum Between the Two Conditions? Front Neurol 2020; 11:600026. [PMID: 33362702 PMCID: PMC7759670 DOI: 10.3389/fneur.2020.600026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction: Differential diagnosis between disorders of arousal (DoA) and sleep-related hypermotor epilepsy (SHE) often represents a clinical challenge. The two conditions may be indistinguishable from a semiological point of view and the scalp video-polysomnography is often uninformative. Both disorders are associated with variable hypermotor manifestations ranging from major events to fragments of a hierarchical continuum of increasing intensity, complexity, and duration. Given their semiological overlap we decided to explore the sleep texture of DoA and SHE seeking for similarities and differences. Methods: We analyzed sleep macrostructure and CAP (cyclic alternating pattern) parameters in a cohort of 35 adult DoA patients, 40 SHE patients and 24 healthy sleepers, all recorded and scored in the same sleep laboratory. Nocturnal behavioral manifestations included minor motor events, paroxysmal arousals and major attacks in SHE, and simple, rising, or complex arousal movements in DoA. Results: Compared to healthy controls, DoA and SHE showed similar amounts of sleep efficiency, light sleep, deep sleep, REM sleep, CAP subtypes. Both groups also showed slow wave sleep fragmentation and an increased representation of stage N3 in the second part of the night. The only discriminating elements between the two conditions regarded sleep length (more reduced in DoA) and sleep instability (more elevated in SHE). In DoA recordings, all motor episodes arose from NREM sleep: 37% during light NREM stages and 63% during stage N3 (simple arousal movements: 94%). In SHE recordings, 57% of major attacks occurred during stage N3. Conclusions: So far, emphasis has been placed on the differentiation of sleep-related epilepsy and NREM arousal disorders. However, the impressive analogies between DoA and SHE suggest the existence of an underestimated continuum across the conditions, linked by increased levels of sleep instability, higher amounts of slow wave sleep and NREM/REM sleep imbalance. Sleep texture is extremely similar in the two conditions, although CAP metrics disclose quantitative differences. In particular, SHE patients show a higher arousal instability compared to DoA subjects. Given their clinical and epidemiological overlap, a common genetic background is also hypothesized. In such a perspective, we suggest that the consolidated dichotomy DoA vs. SHE should be reappraised.
Collapse
Affiliation(s)
- Carlotta Mutti
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Giorgia Bernabè
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Noemi Barozzi
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Rosario Ciliento
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Irene Trippi
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Unit of Neuroscience & Interdepartmental Center of Robust Statistics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicoletta Azzi
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Liborio Parrino
- Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Sun Y, Li J, Zhang X, Jiao Q, Yang S, Ji L. Case Report: Parasomnia Overlap Disorder Induced by Obstructive Sleep Hypopnea Apnea Syndrome: A Case Report and Literature Review. Front Neurosci 2020; 14:578171. [PMID: 33362452 PMCID: PMC7758532 DOI: 10.3389/fnins.2020.578171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 01/17/2023] Open
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) and parasomnia overlap disorder (POD) are types of sleep disorders. When the symptoms of both conditions coexist, the POD symptoms are most likely caused by OSAHS. In these cases, the symptoms of POD will be relieved when OSAHS is effectively treated. We refer to these cases as symptomatic POD (related to OSAHS), which differs in pathophysiology, complications, and treatment from idiopathic POD. It is important to note that the treatment for idiopathic POD may aggravate the symptoms of OSAHS. In this case, we used video polysomnography (v-PSG) on a POD patient with suspected OSAHS to distinguish idiopathic POD from symptomatic POD, to inform the appropriate treatment course. The video results and clinical features lead us to diagnose symptomatic POD, and we treated the patient with auto-set continuous positive airway pressure to address their OSAHS. This course of treatment resolved all POD-related symptoms. Here, we discuss this case and review the relevant literature. This report highlights the importance of the use of v-PSG in the clinical diagnosis, differential diagnosis, and subsequent treatment of POD.
Collapse
Affiliation(s)
- Yun Sun
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China
| | - Xinjun Zhang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Shutong Yang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Lijie Ji
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
26
|
Mullins AE, Kam K, Parekh A, Bubu OM, Osorio RS, Varga AW. Obstructive Sleep Apnea and Its Treatment in Aging: Effects on Alzheimer's disease Biomarkers, Cognition, Brain Structure and Neurophysiology. Neurobiol Dis 2020; 145:105054. [PMID: 32860945 PMCID: PMC7572873 DOI: 10.1016/j.nbd.2020.105054] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Here we review the impact of obstructive sleep apnea (OSA) on biomarkers of Alzheimer's disease (AD) pathogenesis, neuroanatomy, cognition and neurophysiology, and present the research investigating the effects of continuous positive airway pressure (CPAP) therapy. OSA is associated with an increase in AD markers amyloid-β and tau measured in cerebrospinal fluid (CSF), by Positron Emission Tomography (PET) and in blood serum. There is some evidence suggesting CPAP therapy normalizes AD biomarkers in CSF but since mechanisms for amyloid-β and tau production/clearance in humans are not completely understood, these findings remain preliminary. Deficits in the cognitive domains of attention, vigilance, memory and executive functioning are observed in OSA patients with the magnitude of impairment appearing stronger in younger people from clinical settings than in older community samples. Cognition improves with varying degrees after CPAP use, with the greatest effect seen for attention in middle age adults with more severe OSA and sleepiness. Paradigms in which encoding and retrieval of information are separated by periods of sleep with or without OSA have been done only rarely, but perhaps offer a better chance to understand cognitive effects of OSA than isolated daytime testing. In cognitively normal individuals, changes in EEG microstructure during sleep, particularly slow oscillations and spindles, are associated with biomarkers of AD, and measures of cognition and memory. Similar changes in EEG activity are reported in AD and OSA, such as "EEG slowing" during wake and REM sleep, and a degradation of NREM EEG microstructure. There is evidence that CPAP therapy partially reverses these changes but large longitudinal studies demonstrating this are lacking. A diagnostic definition of OSA relying solely on the Apnea Hypopnea Index (AHI) does not assist in understanding the high degree of inter-individual variation in daytime impairments related to OSA or response to CPAP therapy. We conclude by discussing conceptual challenges to a clinical trial of OSA treatment for AD prevention, including inclusion criteria for age, OSA severity, and associated symptoms, the need for a potentially long trial, defining relevant primary outcomes, and which treatments to target to optimize treatment adherence.
Collapse
Affiliation(s)
- Anna E Mullins
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Korey Kam
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Omonigho M Bubu
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Ricardo S Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
27
|
Zhang Y, Ren R, Yang L, Sanford LD, Tang X. Polysomnographically measured sleep changes in idiopathic REM sleep behavior disorder: A systematic review and meta-analysis. Sleep Med Rev 2020; 54:101362. [PMID: 32739826 DOI: 10.1016/j.smrv.2020.101362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Polysomnographic studies conducted to explore sleep changes in idiopathic rapid eye movement sleep behavior disorder (iRBD) have not established clear relationships between sleep disturbances and iRBD. To explore the polysomnographic differences between iRBD patients and healthy controls and their associated factors, an electronic literature search was conducted in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycINFO inception to December 2019.34 studies were identified for systematic review, 33 of which were used for meta-analysis. Meta-analyses revealed significant reductions in total sleep time (SMD = -0.212, 95%CI: -0.378 to -0.046), sleep efficiency (SMD = -0.194, 95%CI: -0.369 to -0.018), apnea hypopnea index (SMD = -0.440, 95%CI: -0.780 to -0.101), and increases in sleep latency (SMD = 0.340, 95%CI: 0.074 to 0.606), and slow wave sleep (SMD = 0.294, 95%CI: 0.064 to 0.523) in iRBD patients compared with controls. Furthermore, electroencephalogram frequency components during REM sleep were altered in iRBD patients compared with controls; however, the specific changes could not be determined. Our findings suggest that polysomnographic sleep is abnormal in iRBD patients. Further studies are needed on underlying mechanisms and associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Cesari M, Christensen JAE, Muntean ML, Mollenhauer B, Sixel-Döring F, Sorensen HBD, Trenkwalder C, Jennum P. A data-driven system to identify REM sleep behavior disorder and to predict its progression from the prodromal stage in Parkinson's disease. Sleep Med 2020; 77:238-248. [PMID: 32798136 DOI: 10.1016/j.sleep.2020.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To investigate electroencephalographic (EEG), electrooculographic (EOG) and micro-sleep abnormalities associated with rapid eye movement (REM) sleep behavior disorder (RBD) and REM behavioral events (RBEs) in Parkinson's disease (PD). METHODS We developed an automated system using only EEG and EOG signals. First, automatic macro- (30-s epochs) and micro-sleep (5-s mini-epochs) staging was performed. Features describing micro-sleep structure, EEG spectral content, EEG coherence, EEG complexity, and EOG energy were derived. All features were input to an ensemble of random forests, giving as outputs the probabilities of having RBD or not (P (RBD) and P (nonRBD), respectively). A patient was classified as having RBD if P (RBD)≥P (nonRBD). The system was applied to 107 de novo PD patients: 54 had normal REM sleep (PDnonRBD), 26 had RBD (PD + RBD), and 27 had at least two RBEs without meeting electromyographic RBD cut-off (PD + RBE). Sleep diagnoses were made with video-polysomnography (v-PSG). RESULTS Considering PDnonRBD and PD + RBD patients only, the system identified RBD with accuracy, sensitivity, and specificity over 80%. Among the features, micro-sleep instability had the highest importance for RBD identification. Considering PD + RBE patients, the ones who developed definite RBD after two years had significantly higher values of P (RBD) at baseline compared to the ones who did not. The former were distinguished from the latter with sensitivity and specificity over 75%. CONCLUSIONS Our method identifies RBD in PD patients using only EEG and EOG signals. Micro-sleep instability could be a biomarker for RBD and for proximity of conversion from RBEs, as prodromal RBD, to definite RBD in PD patients.
Collapse
Affiliation(s)
- Matteo Cesari
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Julie A E Christensen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | | | - Brit Mollenhauer
- Paracelsus-Elena Klinik, Kassel, Germany; Department of Neurology, University Medical Center, Goettingen, Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena Klinik, Kassel, Germany; Department of Neurology, Philipps University, Marburg, Germany
| | - Helge B D Sorensen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|