1
|
Quan P, Mao T, Zhang X, Wang R, Lei H, Wang J, Liu W, Dinges DF, Jiang C, Rao H. Locus coeruleus microstructural integrity is associated with vigilance vulnerability to sleep deprivation. Hum Brain Mapp 2024; 45:e70013. [PMID: 39225144 PMCID: PMC11369684 DOI: 10.1002/hbm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Insufficient sleep compromises cognitive performance, diminishes vigilance, and disrupts daily functioning in hundreds of millions of people worldwide. Despite extensive research revealing significant variability in vigilance vulnerability to sleep deprivation, the underlying mechanisms of these individual differences remain elusive. Locus coeruleus (LC) plays a crucial role in the regulation of sleep-wake cycles and has emerged as a potential marker for vigilance vulnerability to sleep deprivation. In this study, we investigate whether LC microstructural integrity, assessed by fractional anisotropy (FA) through diffusion tensor imaging (DTI) at baseline before sleep deprivation, can predict impaired psychomotor vigilance test (PVT) performance during sleep deprivation in a cohort of 60 healthy individuals subjected to a rigorously controlled in-laboratory sleep study. The findings indicate that individuals with high LC FA experience less vigilance impairment from sleep deprivation compared with those with low LC FA. LC FA accounts for 10.8% of the variance in sleep-deprived PVT lapses. Importantly, the relationship between LC FA and impaired PVT performance during sleep deprivation is anatomically specific, suggesting that LC microstructural integrity may serve as a biomarker for vigilance vulnerability to sleep loss.
Collapse
Affiliation(s)
- Peng Quan
- The First Dongguan Affiliated Hospital, School of Humanities and ManagementGuangdong Medical UniversityDongguanChina
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tianxin Mao
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain‐Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and ManagementShanghai International Studies UniversityShanghaiChina
| | - Xiaocui Zhang
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruosi Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain‐Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and ManagementShanghai International Studies UniversityShanghaiChina
| | - Hui Lei
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jieqiong Wang
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wanting Liu
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David F. Dinges
- Chronobiology and Sleep InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain‐Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and ManagementShanghai International Studies UniversityShanghaiChina
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain‐Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and ManagementShanghai International Studies UniversityShanghaiChina
- Chronobiology and Sleep InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Sanford LD, Adkins AM, Boden AF, Gotthold JD, Harris RD, Shuboni-Mulligan D, Wellman LL, Britten RA. Sleep and Core Body Temperature Alterations Induced by Space Radiation in Rats. Life (Basel) 2023; 13:life13041002. [PMID: 37109531 PMCID: PMC10144689 DOI: 10.3390/life13041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sleep problems in astronauts can arise from mission demands and stress and can impact both their health and ability to accomplish mission objectives. In addition to mission-related physical and psychological stressors, the long durations of the proposed Mars missions will expose astronauts to space radiation (SR), which has a significant impact on the brain and may also alter sleep and physiological functions. Therefore, in this study, we assessed sleep, EEG spectra, activity, and core body temperature (CBT) in rats exposed to SR and compared them to age-matched nonirradiated rats. Male outbred Wistar rats (8-9 months old at the time of the study) received SR (15 cGy GCRsim, n = 15) or served as age- and time-matched controls (CTRL, n = 15) without irradiation. At least 90 days after SR and 3 weeks prior to recording, all rats were implanted with telemetry transmitters for recording EEG, activity, and CBT. Sleep, EEG spectra (delta, 0.5-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; sigma, 12-16 Hz; beta, 16-24 Hz), activity, and CBT were examined during light and dark periods and during waking and sleeping states. When compared to the CTRLs, SR produced significant reductions in the amounts of dark period total sleep time, total nonrapid eye movement sleep (NREM), and total rapid eye movement sleep (REM), with significant decreases in light and dark period NREM deltas and dark period REM thetas as well as increases in alpha and sigma in NREM and REM during either light or dark periods. The SR animals showed modest increases in some measures of activity. CBT was significantly reduced during waking and sleeping in the light period. These data demonstrate that SR alone can produce alterations to sleep and temperature control that could have consequences for astronauts and their ability to meet mission demands.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alea F Boden
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Justin D Gotthold
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ryan D Harris
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela Shuboni-Mulligan
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Richard A Britten
- Center for Integrative Neuroscience and Inflammatory Diseases, Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
3
|
Differential Impact of Social Isolation and Space Radiation on Behavior and Motor Learning in Rats. Life (Basel) 2023; 13:life13030826. [PMID: 36983981 PMCID: PMC10057568 DOI: 10.3390/life13030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Future missions to Mars will expose astronauts to several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI). Each of these stressors, in addition to mission demands, can affect physical and mental health and potentially negatively impact sleep. The effects of inflight stressors may vary with duration and time course, may be additive or compounding, and may vary with individual differences in stress resilience and vulnerability. Determining how individual differences in resilient and vulnerable phenotypes respond to these mission-related stressors and their interactions with sleep will be crucial for understanding and mitigating factors that can impair performance and damage health. Here, we examined the single and compound effects of ground-based analogs of SI and SR on sensorimotor performance on the balance beam (BB) in rats. We also assessed emotional responses during testing on the BB and assessed whether sensorimotor performance and emotion varied with individual differences in stress resiliency using our established animal model in which stress produces different effects on sleep. Results showed differential motor performance and emotion in the BB task between SI and SR, and these varied based on resilient and vulnerable phenotypes. These findings demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that flight stressors have on the mental health of astronauts and their ability to perform mission-related tasks.
Collapse
|
4
|
Sanford LD, Wellman LL, Adkins AM, Guo ML, Zhang Y, Ren R, Yang L, Tang X. Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for understanding trauma and stress-related disorders. Neurobiol Stress 2023; 23:100517. [PMID: 36793998 PMCID: PMC9923229 DOI: 10.1016/j.ynstr.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Sleep and stress have complex interactions that are implicated in both physical diseases and psychiatric disorders. These interactions can be modulated by learning and memory, and involve additional interactions with the neuroimmune system. In this paper, we propose that stressful challenges induce integrated responses across multiple systems that can vary depending on situational variables in which the initial stress was experienced, and with the ability of the individual to cope with stress- and fear-inducing challenges. Differences in coping may involve differences in resilience and vulnerability and/or whether the stressful context allows adaptive learning and responses. We provide data demonstrating both common (corticosterone, SIH and fear behaviors) and distinguishing (sleep and neuroimmune) responses that are associated with an individual's ability to respond and relative resilience and vulnerability. We discuss neurocircuitry regulating integrated stress, sleep, neuroimmune and fear responses, and show that responses can be modulated at the neural level. Finally, we discuss factors that need to be considered in models of integrated stress responses and their relevance for understanding stress-related disorders in humans.
Collapse
Affiliation(s)
- Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M. Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Phillips DJ, Blaine S, Wallace NK, Karatsoreos IN. Brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of circadian desynchronization on activity and sleep in male mice. Front Neurosci 2023; 16:1013673. [PMID: 36699530 PMCID: PMC9868941 DOI: 10.3389/fnins.2022.1013673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Understanding how environmental interact challenges with genetic predispositions modulate health and wellbeing is an important area of biomedical research. Circadian rhythms play an important role in coordinating the multitude of cellular and tissue processes that organisms use to predict and adapt to regular changes in the environment, and robust circadian rhythms contribute to optimal physiological and behavioral responses to challenge. However, artificial lighting and modern round-the-clock lifestyles can disrupt the circadian system, leading to desynchronization of clocks throughout the brain and body. When coupled with genetic predispositions, circadian desynchronization may compound negative outcomes. Polymorphisms in the brain-derived neurotrophic (BDNF) gene contribute to variations in neurobehavioral responses in humans, including impacts on sleep, with the common Val66Met polymorphism linked to several negative outcomes. Methods We explored how the Val66Met polymorphism modulates the response to environmental circadian desynchronization (ECD) in a mouse model. ECD was induced by housing adult male mice in a 20 h light-dark cycle (LD10:10; 10 h light, 10 h dark). Sleep and circadian activity were recorded in homozygous (Met) mice and their wild-type (Val) littermates in a standard 24 h LD cycle (LD12:12), then again after 20, 40, and 60 days of ECD. Results We found ECD significantly affected the sleep/wake timing in Val mice, however, Met mice maintained appropriate sleep timing after 20 days ECD, but not after 40 and 60 days of ECD. In addition, the rise in delta power at lights on was absent in Val mice but was maintained in Met mice. To elucidate the circadian and homeostatic contribution to disrupted sleep, mice were sleep deprived by gentle handling in LD12:12 and after 20 days in ECD. Following 6 h of sleep deprivation delta power was increased for both Val and Met mice in LD12:12 and ECD conditions. However, the time constant was significantly longer in the Val mice during ECD compared to LD12:12, suggesting a functioning but altered sleep homeostat. Discussion These data suggest the Val66Met mutation is associated with an ability to resist the effects of LD10:10, which may result in carriers suffering fewer negative impacts of ECD.
Collapse
Affiliation(s)
- Derrick J. Phillips
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States,*Correspondence: Derrick J. Phillips,
| | - Scott Blaine
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Naomi K. Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Ilia N. Karatsoreos
- Neuroscience and Behavior Program, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States,Ilia N. Karatsoreos,
| |
Collapse
|
6
|
Adkins AM, Wellman LL, Sanford LD. Controllable and Uncontrollable Stress Differentially Impact Fear Conditioned Alterations in Sleep and Neuroimmune Signaling in Mice. Life (Basel) 2022; 12:1320. [PMID: 36143359 PMCID: PMC9506236 DOI: 10.3390/life12091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Stress induces neuroinflammation and disrupts sleep, which together can promote a number of stress-related disorders. Fear memories associated with stress can resurface and reproduce symptoms. Our previous studies have demonstrated sleep outcomes can be modified by stressor controllability following stress and fear memory recall. However, it is unknown how stressor controllability alters neuroinflammatory signaling and its association with sleep following fear memory recall. Mice were implanted with telemetry transmitters and experienced escapable or inescapable footshock and then were re-exposed to the shuttlebox context one week later. Gene expression was assessed with Nanostring® panels using RNA extracted from the basolateral amygdala and hippocampus. Freezing and temperature were examined as behavioral measures of fear. Increased sleep after escapable stress was associated with a down-regulation in neuro-inflammatory and neuro-degenerative related genes, while decreased sleep after inescapable stress was associated with an up-regulation in these genes. Behavioral measures of fear were virtually identical. Sleep and neuroimmune responses appear to be integrated during fear conditioning and reproduced by fear memory recall. The established roles of disrupted sleep and neuroinflammation in stress-related disorders indicate that these differences may serve as informative indices of how fear memory can lead to psychopathology.
Collapse
Affiliation(s)
| | | | - Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
7
|
Díaz-Hung ML, Hetz C. Proteostasis and resilience: on the interphase between individual's and intracellular stress. Trends Endocrinol Metab 2022; 33:305-317. [PMID: 35337729 DOI: 10.1016/j.tem.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
A long proportion of the population is resilient to the negative consequences of stress. Glucocorticoids resulting from endocrine responses to stress are essential adaptive mediators, but also drive alterations to brain function, negatively impacting neuronal connectivity, synaptic plasticity, and memory-related processes. Recent evidence has indicated that organelle function and cellular stress responses are relevant determinant of vulnerability and resistance to environmental stress. At the molecular level, a fundamental mechanism of cellular stress adaptation is the maintenance of proteostasis, which also have key roles in sustaining basal neuronal function. Here, we discuss recent evidence suggesting that proteostasis unbalance at the level of the endoplasmic reticulum, the main site for protein folding in the cell, represents a possible mechanistic link between individuals and cellular stress.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
8
|
Balakathiresan NS, Bhomia M, Zhai M, Sweeten BLW, Wellman LL, Sanford LD, Knollmann-Ritschel B. MicroRNAs in Basolateral Amygdala Associated with Stress and Fear Memories Regulate Rapid Eye Movement Sleep in Rats. Brain Sci 2021; 11:brainsci11040489. [PMID: 33921465 PMCID: PMC8069888 DOI: 10.3390/brainsci11040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Stress-related sleep disturbances are distressing clinical symptoms in posttraumatic stress disorder patients. Intensely stressful events and their memories change rapid eye movement (REM) sleep in animal models. REM sleep varies with individual differences of stress resilience or vulnerability. The basolateral amygdala (BLA) is a primary mediator of the effects of stress and fear memories on sleep. However, the molecular mechanisms in BLA regulating the effects of fear conditioning, shock training (ST) and context re-exposure (CTX) on REM sleep are not well known. MicroRNAs (miRNAs) are small, non-coding RNAs and posttranscriptional gene regulators of diverse biological processes. The aim of this study is to investigate ST- and CTX-altered miRNAs in the BLA of resilience and vulnerable animals and on REM sleep regulation. MiRNAs expression profiles in BLA were generated following ST and CTX using the Taqman Low Density rodent microRNA array. The altered BLA miRNAs expression and REM sleep reduction observed in ST and CTX vulnerable animals. AntagomiR-221 microinjection into BLA for one of the upregulated miRNAs, miR-221 in BLA, attenuated the REM sleep reduction. This study suggests that miRNAs in the BLA may play a significant role in mediating the effects of stress and fear memories on REM sleep.
Collapse
Affiliation(s)
- Nagaraja S. Balakathiresan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
- Correspondence:
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
| | - Min Zhai
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
| | - Brook L. W. Sweeten
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (B.L.W.S.); (L.L.W.); (L.D.S.)
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (B.L.W.S.); (L.L.W.); (L.D.S.)
| | - Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (B.L.W.S.); (L.L.W.); (L.D.S.)
| | - Barbara Knollmann-Ritschel
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
| |
Collapse
|
9
|
Sweeten BL, Adkins AM, Wellman LL, Sanford LD. Group II metabotropic glutamate receptor activation in the basolateral amygdala mediates individual differences in stress-induced changes in rapid eye movement sleep. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110014. [PMID: 32534177 PMCID: PMC7483570 DOI: 10.1016/j.pnpbp.2020.110014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Group II metabotropic glutamate receptors (mGluR2/3s) have been implicated in stress and trauma related disorders including post-traumatic stress disorder (PTSD). PTSD is characterized by flashbacks, anxiety, and sleep disturbances. While many people are exposed to trauma in their lifetime, only a small percentage go on to develop PTSD, indicating individual differences in stress and emotional processing. Wistar strain rats display directionally different rapid-eye movement sleep (REM) responses to footshock stress, with resilient rats having no change or an increase in REM and vulnerable rats having a significant reduction in REM compared to baseline. The basolateral nucleus of the amygdala (BLA) is key in regulating individual differences in stress-induced alterations in sleep. Group II metabotropic glutamate receptors (mGluR2/3s) negatively modulate glutamate and are implicated in fear, fear memory, and sleep. The current study evaluated the effect of mGluR2/3 agonist LY379268 (LY37) in BLA on stress and fear memory induced changes in sleep, EEG spectra, behavioral fear expression and physiological stress. These data indicate that vulnerable rats treated with LY37 have an attenuation of the REM reductions generally seen in vulnerable rats. Furthermore, LY37 altered EEG spectra in the delta (0.5-4.5 Hz) and theta (5-9.5 Hz) frequency. LY37 did not impact behavioral fear expression or physiological stress. Therefore, mGluR2/3s within BLA are implicated in regulating individual differences in sleep responses to fear- and stress-related memories.
Collapse
Affiliation(s)
| | | | | | - Larry D. Sanford
- Corresponding authors at: Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507,
| |
Collapse
|
10
|
Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 2020; 194:111418. [PMID: 33340523 DOI: 10.1016/j.mad.2020.111418] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Decline in biological resilience (ability to recover) is a key manifestation of aging that contributes to increase in vulnerability to death with age eventually limiting longevity even in people without major chronic diseases. Understanding the mechanisms of this decline is essential for developing efficient anti-aging and pro-longevity interventions. In this paper we discuss: a) mechanisms of the decline in resilience with age, and aging components that contribute to this decline, including depletion of body reserves, imperfect repair mechanisms, and slowdown of physiological processes and responses with age; b) anti-aging interventions that may improve resilience or attenuate its decline; c) biomarkers of resilience available in human and experimental studies; and d) genetic factors that could influence resilience. There are open questions about optimal anti-aging interventions that would oppose the decline in resilience along with extending longevity limits. However, the area develops quickly, and prospects are exciting.
Collapse
|
11
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
12
|
Grafe LA, O'Mara L, Branch A, Dobkin J, Luz S, Vigderman A, Shingala A, Kubin L, Ross R, Bhatnagar S. Passive Coping Strategies During Repeated Social Defeat Are Associated With Long-Lasting Changes in Sleep in Rats. Front Syst Neurosci 2020; 14:6. [PMID: 32140101 PMCID: PMC7043017 DOI: 10.3389/fnsys.2020.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Exposure to severe stress has immediate and prolonged neuropsychiatric consequences and increases the risk of developing Posttraumatic Stress Disorder (PTSD). Importantly, PTSD develops in only a subset of individuals after exposure to a traumatic event, with the understanding of this selective vulnerability being very limited. Individuals who go on to develop PTSD after a traumatic experience typically demonstrate sleep disturbances including persistent insomnia and recurrent trauma-related nightmares. We previously established a repeated social defeat paradigm in which rats segregate into either passively or actively coping subpopulations, and we found that this distinction correlates with measures of vulnerability or resilience to stress. In this study, we examined differences between these two behavioral phenotypes in sleep changes resulting from repeated social defeat stress. Our data indicate that, compared to control and actively coping rats, passively coping rats have less slow-wave sleep (SWS) for at least 2 weeks after the end of a series of exposures to social defeat. Furthermore, resilient rats show less exaggerated motor activation at awakenings from rapid eye movement (REM) sleep and less fragmentation of REM sleep compared to control and passively coping rats. Together, these data associate a passive coping strategy in response to repeated social defeat stress with persisting sleep disturbances. Conversely, an active coping strategy may be associated with resilience to sleep disturbances. These findings may have both prognostic and therapeutic applications to stress-associated neuropsychiatric disorders, including PTSD.
Collapse
Affiliation(s)
- Laura A Grafe
- Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Lauren O'Mara
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anna Branch
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jane Dobkin
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sandra Luz
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Abigail Vigderman
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Aakash Shingala
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard Ross
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Behavioral Health Service, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|