1
|
Immunization with a heat-killed preparation of Mycobacterium vaccae NCTC 11659 enhances auditory-cued fear extinction in a stress-dependent manner. Brain Behav Immun 2023; 107:1-15. [PMID: 36108946 DOI: 10.1016/j.bbi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Stress-related psychiatric disorders including anxiety disorders, mood disorders, and trauma and stressor-related disorders, such as posttraumatic stress disorder (PTSD), affect millions of people world-wide each year. Individuals with stress-related psychiatric disorders have been found to have poor immunoregulation, increased proinflammatory markers, and dysregulation of fear memory. The "Old Friends" hypothesis proposes that a lack of immunoregulatory inputs has led to a higher prevalence of inflammatory disorders and stress-related psychiatric disorders, in which inappropriate inflammation is thought to be a risk factor. Immunization with a soil-derived saprophytic bacterium with anti-inflammatory and immunoregulatory properties, Mycobacterium vaccae NCTC 11659, can lower proinflammatory biomarkers, increase stress resilience, and, when given prior to or after fear conditioning in a rat model of fear-potentiated startle, enhance fear extinction. In this study, we investigated whether immunization with heat-killed M. vaccae NCTC 11659 would enhance fear extinction in contextual or auditory-cued fear conditioning paradigms and whether M. vaccae NCTC 11659 would prevent stress-induced exaggeration of fear expression or stress-induced resistance to extinction learning. Adult male Sprague Dawley rats were immunized with M. vaccae NCTC 11659 (subcutaneous injections once a week for three weeks), and underwent either: Experiment 1) one-trial contextual fear conditioning; Experiment 2) two-trial contextual fear conditioning; Experiment 3) stress-induced enhancement of contextual fear conditioning; Experiment 4) stress-induced enhancement of auditory-cued fear conditioning; or Experiment 5) stress-induced enhancement of auditory-cued fear conditioning exploring short-term memory. Immunizations with M. vaccae NCTC 11659 had no effect on one- or two-trial contextual fear conditioning or contextual fear extinction, with or without exposure to inescapable stress. However, inescapable stress increased resistance to auditory-cued fear extinction. Immunization with M. vaccae NCTC 11659 prevented the stress-induced increase in resistance to auditory-cued fear extinction learning. Finally, in an auditory-cued fear conditioning paradigm exploring short-term memory and fear acquisition, immunization with M. vaccae did not prevent fear acquisition, either with or without exposure to inescapable stress, consistent with the hypothesis that M. vaccae NCTC 11659 has no effect on fear acquisition but enhances fear extinction. These data are consistent with the hypothesis that increased immunoregulation following immunization with M. vaccae NCTC 11659 promotes stress resilience, in particular by preventing stress-induced resistance to fear extinction, and may be a potential therapeutic intervention for trauma- and stressor-related disorders such as PTSD.
Collapse
|
2
|
Loupy KM, Cler KE, Marquart BM, Yifru TW, D'Angelo HM, Arnold MR, Elsayed AI, Gebert MJ, Fierer N, Fonken LK, Frank MG, Zambrano CA, Maier SF, Lowry CA. Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain Behav Immun 2021; 91:212-229. [PMID: 33011306 PMCID: PMC7749860 DOI: 10.1016/j.bbi.2020.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin E Cler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brandon M Marquart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tumim W Yifru
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|