1
|
Wu KY, Dhaliwal JK, Sasitharan A, Kalevar A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024; 16:1299. [PMID: 39458628 PMCID: PMC11510658 DOI: 10.3390/pharmaceutics16101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. Methods: A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. Results: Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. Conclusions: While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Jaskarn K. Dhaliwal
- Faculty of Health Sciences, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Akash Sasitharan
- Faculty of Medicine and Health Sciences, Department of Medicine, McGill University, Montreal, QC H3A 0GA, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
2
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
3
|
Liu Q, Liu J, Guo M, Sung TC, Wang T, Yu T, Tian Z, Fan G, Wu W, Higuchi A. Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model. J Transl Med 2023; 21:910. [PMID: 38098048 PMCID: PMC10720187 DOI: 10.1186/s12967-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats. METHODS The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light-dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells. RESULTS Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results. CONCLUSIONS Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Minmei Guo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan.
| |
Collapse
|