1
|
Zhang Y, Wu F, Guo S, Yin R, Yuan M, Li X, Zhao X, Li X. Critical role of apoptosis in MeCP2-mediated epithelial-mesenchymal transition of ARPE-19 cells. J Cell Physiol 2024:e31429. [PMID: 39238182 DOI: 10.1002/jcp.31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Proliferative vitreoretinopathy (PVR) is a complex disease that significantly contributes to recurrent retinal detachment. Its development is notably affected by epithelial-mesenchymal transition (EMT), where apoptosis plays a crucial role as a regulator of EMT. However, the function of MeCP2 in governing apoptosis and EMT in retinal pigment epithelial (RPE) cells and its implications for PVR development have remained inadequately understood. Thus, we investigated the impact of MeCP2 on proliferation, migration, apoptosis and EMT in ARPE-19 cells to provide a fresh perspective on the etiology of PVR. The morphological changes in ARPE-19 cells induced by recombinant human MeCP2 protein and MeCP2 knockdown were observed. Wound healing assay were performed to verify the effects of recombinant human MeCP2 protein and MeCP2 knockdown on ARPE-19 cell migration. Furthermore, cell proliferation was assessed using the CCK-8 assay and flow cytometry. Western blot analysis, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and immunofluorescence analysis were conducted to measure the protein levels associated with apoptosis, cell cycle and EMT. Western blot analysis and immunofluorescence assays confirmed that MeCP2 promoted EMT formation in ARPE-19 cells. The CCK-8 assay revealed that MeCP2 treatment enhanced the proliferation of ARPE-19 cells, whereas MeCP2 knockdown inhibited ARPE-19 cell proliferation. Treatment with recombinant human MeCP2 protein and MeCP2 knockdown altered the morphology of ARPE-19 cells. Wound healing assay demonstrated that MeCP2 knockdown inhibited ARPE-19 cell migration, and MeCP2 treatment promoted ARPE-19 cell migration. MeCP2 knockdown induced a G0/G1 phase block, inhibiting cell growth, and qRT-PCR data indicated reduced expression of cell cycle-related genes. Increased apoptosis was observed after MeCP2 knockdown in ARPE-19 cells. Overall, MeCP2 treatment stimulates cell proliferation, migration and EMT formation; conversely, MeCP2 knockdown inhibits EMT, cell proliferation, migration and cell cycle G1/S phase transition, and induces apoptosis.
Collapse
Affiliation(s)
- Yongya Zhang
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Fei Wu
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Sibei Guo
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
| | - Ruijie Yin
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Min Yuan
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xue Li
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xueru Zhao
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaohua Li
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
2
|
Roy A, DePamphilis ML. Selective Termination of Autophagy-Dependent Cancers. Cells 2024; 13:1096. [PMID: 38994949 PMCID: PMC11240546 DOI: 10.3390/cells13131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The goal of cancer research is to identify characteristics of cancer cells that allow them to be selectively eliminated without harming the host. One such characteristic is autophagy dependence. Cancer cells survive, proliferate, and metastasize under conditions where normal cells do not. Thus, the requirement in cancer cells for more energy and macromolecular biosynthesis can evolve into a dependence on autophagy for recycling cellular components. Recent studies have revealed that autophagy, as well as different forms of cellular trafficking, is regulated by five phosphoinositides associated with eukaryotic cellular membranes and that the enzymes that synthesize them are prime targets for cancer therapy. For example, PIKFYVE inhibitors rapidly disrupt lysosome homeostasis and suppress proliferation in all cells. However, these inhibitors selectively terminate PIKFYVE-dependent cancer cells and cancer stem cells with not having adverse effect on normal cells. Here, we describe the biochemical distinctions between PIKFYVE-sensitive and -insensitive cells, categorize PIKFYVE inhibitors into four groups that differ in chemical structure, target specificity and efficacy on cancer cells and normal cells, identify the mechanisms by which they selectively terminate autophagy-dependent cancer cells, note their paradoxical effects in cancer immunotherapy, and describe their therapeutic applications against cancers.
Collapse
Affiliation(s)
- Ajit Roy
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Room 6N105, 10 Center Dr., Bethesda, MD 20892-0001, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Room 4B413, 6 Center Dr., Bethesda, MD 20892-2790, USA
| |
Collapse
|
3
|
Varineau JE, Calo E. A common cellular response to broad splicing perturbations is characterized by metabolic transcript downregulation driven by the Mdm2-p53 axis. Dis Model Mech 2024; 17:dmm050356. [PMID: 38426258 PMCID: PMC10924232 DOI: 10.1242/dmm.050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.
Collapse
Affiliation(s)
- Jade E. Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Wang Y, Li H, He Q, Zou R, Cai J, Zhang L. Ferroptosis: underlying mechanisms and involvement in neurodegenerative diseases. Apoptosis 2024; 29:3-21. [PMID: 37848673 DOI: 10.1007/s10495-023-01902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Ferroptosis, a mode of cell death that was recently identified in 2012, is driven by iron-dependent lipid peroxidation and distinct from other mechanisms of cell death such as autophagy and apoptosis. Ferroptosis has the unique features of disruptions in iron equilibrium, iron-induced lipid peroxidation, and the accumulation of glutamate-induced cellular toxicity. The regulation of ferroptosis mainly involves the iron, lipid, and amino acid metabolic pathways, which are controlled by system Xc-, voltage-dependent anion channels, p53 and other pathways. Neurodegenerative diseases involve gradual neuronal loss predominantly within the central nervous system and are categorized into both sporadic and rare hereditary disorders. These diseases result in the progressive decline of specific neuron populations and their interconnections. Recent investigations have revealed a strong correlation between the manifestation and progression of neurodegenerative diseases and ferroptosis. The pharmacological modulation of ferroptosis, whether by induction or inhibition, exhibits promising prospects for therapeutic interventions for these diseases. This review aims to examine the literature on ferroptosis and its implications in various neurodegenerative diseases. We hope to offer novel insights into the potential therapies targeting ferroptosis in central nervous system neurodegenerative diseases. However, there are still limitations of this review. First, despite our efforts to maintain objectivity during our analysis, this review does not cover all the studies on ferroptosis and neurodegenerative diseases. Second, cell death in neurodegenerative diseases is not solely caused by ferroptosis. Future research should focus on the interplay of different cell death mechanisms to better elucidate the specific disease pathogenesis.
Collapse
Affiliation(s)
- Yi Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - HongJing Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - QianXiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - JinRui Cai
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, 810008, Qinghai, China.
| |
Collapse
|
5
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Guan L, Yang Y, Lu Y, Chen Y, Luo X, Xin D, Meng X, Shan Z, Jiang G, Wang F. Reactivation of mutant p53 in esophageal squamous cell carcinoma by isothiocyanate inhibits tumor growth. Front Pharmacol 2023; 14:1141420. [PMID: 37168998 PMCID: PMC10164965 DOI: 10.3389/fphar.2023.1141420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
p53 mutations are prevalent in human cancers; approximately half of patients with esophageal cancer present these mutations. Mutant p53 (mutp53) exerts oncogenic functions that promote malignant tumor progression, invasion, metastasis, and drug resistance, resulting in poor prognosis. Some small molecules have been shown to mitigate the oncogenic function of mutp53 by restoring its wild-type activity. Although these molecules have been evaluated in clinical trials, none have been successfully used in the clinic. Here, we investigated the antitumor effects of phenethyl isothiocyanate (PEITC) in p53-mutant esophageal squamous cell carcinoma (ESCC) and elucidated its mechanism to identify new therapeutic strategies. We observed that p53R248Q is a DNA contact mutation and a structural mutation and that PEITC can restore the activity of p53R248Q in vitro and in vivo, further clarifying the antitumor activity of PEITC in cancers with different types of p53 mutations. PEITC can inhibit ESCC growth, induce apoptosis, and arrest cell cycle progression and has a preferential selectivity for ESCC with p53 mutations. Mechanistic studies showed that PEITC induced apoptosis and arrested cells at G2/M transition in cells expressing the p53R248Q mutant by restoring the wild-type conformation and transactivation function of p53; these effects were concentration dependent. Furthermore, PEITC inhibited the growth of subcutaneous xenografts in vivo and restored p53 mutant activity in xenografts. According to these findings, PEITC has antitumor effects, with its ability to restore p53R248Q activity being a key molecular event responsible for these effects.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yalan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Luo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Xin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangrui Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengzheng Shan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Wang,
| |
Collapse
|
7
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|