1
|
Banos H, Wong TKF, Daneau J, Susko E, Minh BQ, Lanfear R, Brown MW, Eme L, Roger AJ. GTRpmix: A Linked General Time-Reversible Model for Profile Mixture Models. Mol Biol Evol 2024; 41:msae174. [PMID: 39158305 PMCID: PMC11371462 DOI: 10.1093/molbev/msae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Profile mixture models capture distinct biochemical constraints on the amino acid substitution process at different sites in proteins. These models feature a mixture of time-reversible models with a common matrix of exchangeabilities and distinct sets of equilibrium amino acid frequencies known as profiles. Combining the exchangeability matrix with each profile generates the matrix of instantaneous rates of amino acid exchange for that profile. Currently, empirically estimated exchangeability matrices (e.g. the LG matrix) are widely used for phylogenetic inference under profile mixture models. However, these were estimated using a single profile and are unlikely optimal for profile mixture models. Here, we describe the GTRpmix model that allows maximum likelihood estimation of a common exchangeability matrix under any profile mixture model. We show that exchangeability matrices estimated under profile mixture models differ from the LG matrix, dramatically improving model fit and topological estimation accuracy for empirical test cases. Because the GTRpmix model is computationally expensive, we provide two exchangeability matrices estimated from large concatenated phylogenomic-supermatrices to be used for phylogenetic analyses. One, called Eukaryotic Linked Mixture (ELM), is designed for phylogenetic analysis of proteins encoded by nuclear genomes of eukaryotes, and the other, Eukaryotic and Archaeal Linked mixture (EAL), for reconstructing relationships between eukaryotes and Archaea. These matrices, combined with profile mixture models, fit data better and have improved topology estimation relative to the LG matrix combined with the same mixture models. Starting with version 2.3.1, IQ-TREE2 allows users to estimate linked exchangeabilities (i.e. amino acid exchange rates) under profile mixture models.
Collapse
Affiliation(s)
- Hector Banos
- Department of Mathematics, California State University San Bernardino, San Bernardino, CA, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Thomas K F Wong
- School of Computing, College of Engineering and Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
- Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia
| | - Justin Daneau
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Bui Quang Minh
- School of Computing, College of Engineering and Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| | - Robert Lanfear
- Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Laura Eme
- Laboratoire d’Ecologie, systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Hellemans S, Rocha MM, Wang M, Romero Arias J, Aanen DK, Bagnères AG, Buček A, Carrijo TF, Chouvenc T, Cuezzo C, Constantini JP, Constantino R, Dedeine F, Deligne J, Eggleton P, Evans TA, Hanus R, Harrison MC, Harry M, Josens G, Jouault C, Kalleshwaraswamy CM, Kaymak E, Korb J, Lee CY, Legendre F, Li HF, Lo N, Lu T, Matsuura K, Maekawa K, McMahon DP, Mizumoto N, Oliveira DE, Poulsen M, Sillam-Dussès D, Su NY, Tokuda G, Vargo EL, Ware JL, Šobotník J, Scheffrahn RH, Cancello E, Roisin Y, Engel MS, Bourguignon T. Genomic data provide insights into the classification of extant termites. Nat Commun 2024; 15:6724. [PMID: 39112457 PMCID: PMC11306793 DOI: 10.1038/s41467-024-51028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
Collapse
Affiliation(s)
- Simon Hellemans
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan.
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium.
| | - Mauricio M Rocha
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | - Menglin Wang
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Johanna Romero Arias
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium
| | - Duur K Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | | | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Thomas Chouvenc
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida, USA
| | - Carolina Cuezzo
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | - Joice P Constantini
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | | | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS / Université de Tours, Faculté des Sciences et Techniques, Parc Grandmont, Tours, France
| | - Jean Deligne
- Royal Museum for Central Africa, Entomology, Tervuren, Belgium
- Département de Biologie des Organismes, Université libre de Bruxelles, Brussels, Belgium
| | - Paul Eggleton
- Department of Life Sciences, Natural History Museum, London, UK
| | - Theodore A Evans
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster. Hüfferstrasße 1, Münster, Germany
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement, Ecologie (EGCE), IDEEV, Université Paris Saclay-CNRS-IRD, 12 route 128, Gif-sur-Yvette, France
| | - Guy Josens
- Département de Biologie des Organismes, Université libre de Bruxelles, Brussels, Belgium
| | - Corentin Jouault
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, Paris, France
- Géosciences Rennes (UMR 6118), Université de Rennes, CNRS, Rennes, France
- Institut des Sciences de l'Évolution de Montpellier (UMR 5554), Université de Montpellier, CNRS, F-, Montpellier, France
| | - Chicknayakanahalli M Kalleshwaraswamy
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
- Department of Entomology, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Esra Kaymak
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany & Charles Darwin University, Darwin, Australia
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA, USA
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, Paris, France
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taichug, Taiwan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Nobuaki Mizumoto
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA
| | - Danilo E Oliveira
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, Villetaneuse, France
| | - Nan-Yao Su
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida, USA
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Jessica L Ware
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Jan Šobotník
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Rudolf H Scheffrahn
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, Florida, USA
| | - Eliana Cancello
- Museu de Zoologia da Universidade de São Paulo, Ipiranga, São Paulo/SP, Brazil
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium
| | - Michael S Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima 14, Perú
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Tinh NH, Dang CC, Vinh LS. QMix: An Efficient Program to Automatically Estimate Multi-Matrix Mixture Models for Amino Acid Substitution Process. J Comput Biol 2024; 31:703-707. [PMID: 38860371 DOI: 10.1089/cmb.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The single-matrix amino acid (AA) substitution models are widely used in phylogenetic analyses; however, they are unable to properly model the heterogeneity of AA substitution rates among sites. The multi-matrix mixture models can handle the site rate heterogeneity and outperform the single-matrix models. Estimating multi-matrix mixture models is a complex process and no computer program is available for this task. In this study, we implemented a computer program of the so-called QMix based on the algorithm of LG4X and LG4M with several enhancements to automatically estimate multi-matrix mixture models from large datasets. QMix employs QMaker algorithm instead of XRATE algorithm to accurately and rapidly estimate the parameters of models. It is able to estimate mixture models with different number of matrices and supports multi-threading computing to efficiently estimate models from thousands of genes. We re-estimate mixture models LG4X and LG4M from 1471 HSSP alignments. The re-estimated models (HP4X and HP4M) are slightly better than LG4X and LG4M in building maximum likelihood trees from HSSP and TreeBASE datasets. QMix program required about 10 hours on a computer with 18 cores to estimate a mixture model with four matrices from 200 HSSP alignments. It is easy to use and freely available for researchers.
Collapse
Affiliation(s)
- Nguyen Huy Tinh
- Vietnam National University, University of Engineering and Technology, Ha Noi, Vietnam
| | - Cuong Cao Dang
- Vietnam National University, University of Engineering and Technology, Ha Noi, Vietnam
| | - Le Sy Vinh
- Vietnam National University, University of Engineering and Technology, Ha Noi, Vietnam
| |
Collapse
|
4
|
Ly-Trong N, Bielow C, De Maio N, Minh BQ. CMAPLE: Efficient Phylogenetic Inference in the Pandemic Era. Mol Biol Evol 2024; 41:msae134. [PMID: 38934791 PMCID: PMC11232695 DOI: 10.1093/molbev/msae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
We have recently introduced MAPLE (MAximum Parsimonious Likelihood Estimation), a new pandemic-scale phylogenetic inference method exclusively designed for genomic epidemiology. In response to the need for enhancing MAPLE's performance and scalability, here we present two key components: (i) CMAPLE software, a highly optimized C++ reimplementation of MAPLE with many new features and advancements, and (ii) CMAPLE library, a suite of application programming interfaces to facilitate the integration of the CMAPLE algorithm into existing phylogenetic inference packages. Notably, we have successfully integrated CMAPLE into the widely used IQ-TREE 2 software, enabling its rapid adoption in the scientific community. These advancements serve as a vital step toward better preparedness for future pandemics, offering researchers powerful tools for large-scale pathogen genomic analysis.
Collapse
Affiliation(s)
- Nhan Ly-Trong
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| | - Chris Bielow
- Bioinformatics Solution Center, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Bui Quang Minh
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
5
|
McShea H, Weibel C, Wehbi S, Goodman P, James JE, Wheeler AL, Masel J. The effectiveness of selection in a species affects the direction of amino acid frequency evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.01.526552. [PMID: 38948853 PMCID: PMC11212923 DOI: 10.1101/2023.02.01.526552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nearly neutral theory predicts that species with higher effective population size (N e ) are better able to purge slightly deleterious mutations. We compare evolution in high-N e vs. low-N e vertebrates to reveal which amino acid frequencies are subject to subtle selective preferences. We take three complementary approaches, two measuring flux and one measuring outcomes. First, we fit non-stationary substitution models of amino acid flux using maximum likelihood, comparing the high-N e clade of rodents and lagomorphs to its low-N e sister clade of primates and colugos. Second, we compare evolutionary outcomes across a wider range of vertebrates, via correlations between amino acid frequencies and N e . Third, we dissect the details of flux in human, chimpanzee, mouse, and rat, as scored by parsimony - this also enables comparison to a historical paper. All three methods agree on which amino acids are preferred under more effective selection. Preferred amino acids tend to be smaller, less costly to synthesize, and to promote intrinsic structural disorder. Parsimony-induced bias in the historical study produces an apparent reduction in structural disorder, perhaps driven by slightly deleterious substitutions. Within highly exchangeable pairs of amino acids, arginine is strongly preferred over lysine, and valine over isoleucine, consistent with more effective selection preferring a marginally larger free energy of folding. These two preferences match differences between thermophiles and mesophilic relatives. These results reveal the biophysical consequences of mutation-selection-drift balance, and demonstrate the utility of nearly neutral theory for understanding protein evolution.
Collapse
Affiliation(s)
- Hanon McShea
- Department of Earth System Science, Stanford University
| | - Catherine Weibel
- Department of Ecology & Evolutionary Biology, University of Arizona
- Department of Applied Physics, Stanford University
| | - Sawsan Wehbi
- Graduate Interdisciplinary Program in Genetics, University of Arizona
| | | | - Jennifer E James
- Department of Ecology & Evolutionary Biology, University of Arizona
- Department of Ecology and Genetics, Uppsala University
| | - Andrew L Wheeler
- Graduate Interdisciplinary Program in Genetics, University of Arizona
| | - Joanna Masel
- Department of Ecology & Evolutionary Biology, University of Arizona
| |
Collapse
|
6
|
Huang WRH, Braam C, Kretschmer C, Villanueva SL, Liu H, Ferik F, van der Burgh AM, Boeren S, Wu J, Zhang L, Nürnberger T, Wang Y, Seidl MF, Evangelisti E, Stuttmann J, Joosten MHAJ. Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana. Nat Commun 2024; 15:4339. [PMID: 38773116 PMCID: PMC11109355 DOI: 10.1038/s41467-024-48313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.
Collapse
Affiliation(s)
- Wen R H Huang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom.
| | - Ciska Braam
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Huan Liu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Aranka M van der Burgh
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Teaching and Learning Centre, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Edouard Evangelisti
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, Institut Sophia Agrobiotech (ISA), 06903, Sophia Antipolis, France
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, LEMiRE (Microbial Ecology of the Rhizosphere), 13115, Saint‑Paul lez Durance, France
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Benning FMC, Bell TA, Nguyen TH, Syau D, Connell LB, daCosta CJB, Chao LH. Ancestral sequence reconstruction of Mic60 reveals a residue signature supporting respiration in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591372. [PMID: 38746426 PMCID: PMC11092495 DOI: 10.1101/2024.04.26.591372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In eukaryotes, the essential process of cellular respiration takes place in the cristae of mitochondria. The protein Mic60 is known to stabilize crista junctions; however, how the C-terminal Mitofilin domain of Mic60 mediates cristae-supported respiration remains elusive. Here, we used ancestral sequence reconstruction to generate Mitofilin ancestors up to and including the last opisthokont common ancestor (LOCA). We found that yeast-lineage derived Mitofilin ancestors as far back as the LOCA rescue respiration. By comparing Mitofilin ancestors with different respiratory phenotypes, we identify four residues that explain the difference between respiration functional yeast- and non-functional animal-derived common Mitofilin ancestors. Our results imply that Mitofilin-supported respiration in yeast stems from a conserved mechanism, and provide a foundation for investigating the divergence of candidate crista junction interactions present during the emergence of eukaryotes.
Collapse
|
8
|
Louie TS, Kumar A, Bini E, Häggblom MM. Mo than meets the eye: genomic insights into molybdoenzyme diversity of Seleniivibrio woodruffii strain S4T. Lett Appl Microbiol 2024; 77:ovae038. [PMID: 38573838 DOI: 10.1093/lambio/ovae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Seleniivibrio woodruffii strain S4T is an obligate anaerobe belonging to the phylum Deferribacterota. It was isolated for its ability to respire selenate and was also found to respire arsenate. The high-quality draft genome of this bacterium is 2.9 Mbp, has a G+C content of 48%, 2762 predicted genes of which 2709 are protein-coding, and 53 RNA genes. An analysis of the genome focusing on the genes encoding for molybdenum-containing enzymes (molybdoenzymes) uncovered a remarkable number of genes encoding for members of the dimethylsulfoxide reductase family of proteins (DMSOR), including putative reductases for selenate and arsenate respiration, as well as genes for nitrogen fixation. Respiratory molybdoenzymes catalyze redox reactions that transfer electrons to a variety of substrates that can act as terminal electron acceptors for energy generation. Seleniivibrio woodruffii strain S4T also has essential genes for molybdate transporters and the biosynthesis of the molybdopterin guanine dinucleotide cofactors characteristic of the active centers of DMSORs. Phylogenetic analysis revealed candidate respiratory DMSORs spanning nine subfamilies encoded within the genome. Our analysis revealed the untapped potential of this interesting microorganism and expanded our knowledge of molybdoenzyme co-occurrence.
Collapse
Affiliation(s)
- Tiffany S Louie
- Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| | - Anil Kumar
- Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences,, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences,, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences,, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
9
|
Sagini JPN, Ligabue-Braun R. Fungal heat shock proteins: molecular phylogenetic insights into the host takeover. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:16. [PMID: 38483597 DOI: 10.1007/s00114-024-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
10
|
Kato K, Hamaguchi T, Kumazawa M, Nakajima Y, Ifuku K, Hirooka S, Hirose Y, Miyagishima SY, Suzuki T, Kawakami K, Dohmae N, Yonekura K, Shen JR, Nagao R. The structure of PSI-LHCI from Cyanidium caldarium provides evolutionary insights into conservation and diversity of red-lineage LHCs. Proc Natl Acad Sci U S A 2024; 121:e2319658121. [PMID: 38442179 PMCID: PMC10945839 DOI: 10.1073/pnas.2319658121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.
Collapse
Affiliation(s)
- Koji Kato
- Division of Photosynthesis and Structural Biology, Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Tasuku Hamaguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi980-8577, Japan
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Hyogo679-5148, Japan
| | - Minoru Kumazawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Yoshiki Nakajima
- Division of Photosynthesis and Structural Biology, Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka411-8540, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Aichi441-8580, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka411-8540, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Saitama351-0198, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Hyogo679-5148, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Saitama351-0198, Japan
| | - Koji Yonekura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi980-8577, Japan
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Hyogo679-5148, Japan
| | - Jian-Ren Shen
- Division of Photosynthesis and Structural Biology, Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Ryo Nagao
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka422-8529, Japan
| |
Collapse
|
11
|
Rosano G, Barzasi A, Lynagh T. Loss of activation by GABA in vertebrate delta ionotropic glutamate receptors. Proc Natl Acad Sci U S A 2024; 121:e2313853121. [PMID: 38285949 PMCID: PMC10861852 DOI: 10.1073/pnas.2313853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.
Collapse
Affiliation(s)
- Giulio Rosano
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Allan Barzasi
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| |
Collapse
|
12
|
Ferreiro D, Khalil R, Sousa SF, Arenas M. Substitution Models of Protein Evolution with Selection on Enzymatic Activity. Mol Biol Evol 2024; 41:msae026. [PMID: 38314876 PMCID: PMC10873502 DOI: 10.1093/molbev/msae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Substitution models of evolution are necessary for diverse evolutionary analyses including phylogenetic tree and ancestral sequence reconstructions. At the protein level, empirical substitution models are traditionally used due to their simplicity, but they ignore the variability of substitution patterns among protein sites. Next, in order to improve the realism of the modeling of protein evolution, a series of structurally constrained substitution models were presented, but still they usually ignore constraints on the protein activity. Here, we present a substitution model of protein evolution with selection on both protein structure and enzymatic activity, and that can be applied to phylogenetics. In particular, the model considers the binding affinity of the enzyme-substrate complex as well as structural constraints that include the flexibility of structural flaps, hydrogen bonds, amino acids backbone radius of gyration, and solvent-accessible surface area that are quantified through molecular dynamics simulations. We applied the model to the HIV-1 protease and evaluated it by phylogenetic likelihood in comparison with the best-fitting empirical substitution model and a structurally constrained substitution model that ignores the enzymatic activity. We found that accounting for selection on the protein activity improves the fitting of the modeled functional regions with the real observations, especially in data with high molecular identity, which recommends considering constraints on the protein activity in the development of substitution models of evolution.
Collapse
Affiliation(s)
- David Ferreiro
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| | - Ruqaiya Khalil
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| | - Sergio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
13
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
14
|
Williams TA, Davin AA, Szánthó LL, Stamatakis A, Wahl NA, Woodcroft BJ, Soo RM, Eme L, Sheridan PO, Gubry-Rangin C, Spang A, Hugenholtz P, Szöllősi GJ. Phylogenetic reconciliation: making the most of genomes to understand microbial ecology and evolution. THE ISME JOURNAL 2024; 18:wrae129. [PMID: 39001714 PMCID: PMC11293204 DOI: 10.1093/ismejo/wrae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Adrian A Davin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Lénárd L Szánthó
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Alexandros Stamatakis
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Noah A Wahl
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Eme
- Unité d’Ecologie, Systématique et Evolution, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul O Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gergely J Szöllősi
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
- Institute of Evolution, HUN REN Centre for Ecological Research, 1121 Budapest, Hungary
| |
Collapse
|
15
|
Canal D, Dos Santos PHD, de Avelar Carpinetti P, Silva MA, Fernandes M, Brustolini OJB, Ferreira A, da Silva Ferreira MF. Exploring the versatility of sesquiterpene biosynthesis in guava plants: a comparative genome-wide analysis of two cultivars. Sci Rep 2024; 14:574. [PMID: 38182724 PMCID: PMC10770072 DOI: 10.1038/s41598-023-51007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Psidium guajava L., a fruit crop belonging to the Myrtaceae family, is highly valued for its nutritional and medicinal properties. The family exhibits a diverse chemical profile of essential oils and serves as a valuable resource due to its ecological interactions, adaptability, and dispersal capacity. The Myrtaceae family has been extensively studied for its terpenoids. Genetic studies have focused on foliar terpene yield in species from the Eucalypteae and Melaleucaceae tribes. To understand the evolutionary trends in guava breeding, this study predicted terpene synthase genes (TPS) from different cultivars. Through this analysis, 43 full-length TPS genes were identified, and approximately 77% of them exhibited relative expression in at least one of the five investigated plant tissues (root, leaf, bud, flower, and fruit) of two guava cultivars. We identified intra-species variation in the terpene profile and single nucleotide polymorphisms (SNPs) in twelve TPS genes, resulting in the clustering of 62 genotypes according to their essential oil chemotypes. The high concentration of sesquiterpenes is supported by the higher number of TPS-a genes and their expression. The expansion for TPS sub-families in P. guajava occurred after the expansion of other rosids species. Providing insight into the origin of structural diversification and expansion in each clade of the TPS gene family within Myrtaceae. This study can provide insights into the diversity of genes for specialized metabolites such as terpenes, and their regulation, which can lead to a diverse chemotype of essential oil in different tissues and genotypes. This suggests a mode of enzymatic evolution that could lead to high sesquiterpene production, act as a chemical defense and contribute to the adaptive capacity of this species to different habitats.
Collapse
Affiliation(s)
- Drielli Canal
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Pedro Henrique Dias Dos Santos
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Paola de Avelar Carpinetti
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Matheus Alves Silva
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | | | - Adésio Ferreira
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
16
|
Weng YM, Shashank PR, Godfrey RK, Plotkin D, Parker BM, Wist T, Kawahara AY. Evolutionary genomics of three agricultural pest moths reveals rapid evolution of host adaptation and immune-related genes. Gigascience 2024; 13:giad103. [PMID: 38165153 PMCID: PMC10759296 DOI: 10.1093/gigascience/giad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Understanding the genotype of pest species provides an important baseline for designing integrated pest management (IPM) strategies. Recently developed long-read sequence technologies make it possible to compare genomic features of nonmodel pest species to disclose the evolutionary path underlying the pest species profiles. Here we sequenced and assembled genomes for 3 agricultural pest gelechiid moths: Phthorimaea absoluta (tomato leafminer), Keiferia lycopersicella (tomato pinworm), and Scrobipalpa atriplicella (goosefoot groundling moth). We also compared genomes of tomato leafminer and tomato pinworm with published genomes of Phthorimaea operculella and Pectinophora gossypiella to investigate the gene family evolution related to the pest species profiles. RESULTS We found that the 3 solanaceous feeding species, P. absoluta, K. lycopersicella, and P. operculella, are clustered together. Gene family evolution analyses with the 4 species show clear gene family expansions on host plant-associated genes for the 3 solanaceous feeding species. These genes are involved in host compound sensing (e.g., gustatory receptors), detoxification (e.g., ABC transporter C family, cytochrome P450, glucose-methanol-choline oxidoreductase, insect cuticle proteins, and UDP-glucuronosyl), and digestion (e.g., serine proteases and peptidase family S1). A gene ontology enrichment analysis of rapid evolving genes also suggests enriched functions in host sensing and immunity. CONCLUSIONS Our results of family evolution analyses indicate that host plant adaptation and pathogen defense could be important drivers in species diversification among gelechiid moths.
Collapse
Affiliation(s)
- Yi-Ming Weng
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Pathour R Shashank
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Division of Entomology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - R Keating Godfrey
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David Plotkin
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Brandon M Parker
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Tyler Wist
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0×2, Canada
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Prillo S, Ravoor A, Yosef N, Song YS. ConvexML: Scalable and accurate inference of single-cell chronograms from CRISPR/Cas9 lineage tracing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569785. [PMID: 38076815 PMCID: PMC10705529 DOI: 10.1101/2023.12.03.569785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
CRISPR/Cas9 gene editing technology has enabled lineage tracing for thousands of cells in vivo. However, most of the analysis of CRISPR/Cas9 lineage tracing data has so far been limited to the reconstruction of single-cell tree topologies, which depict lineage relationships between cells, but not the amount of time that has passed between ancestral cell states and the present. Time-resolved trees, known as chronograms, would allow one to study the evolutionary dynamics of cell populations at an unprecedented level of resolution. Indeed, time-resolved trees would reveal the timing of events on the tree, the relative fitness of subclones, and the dynamics underlying phenotypic changes in the cell population - among other important applications. In this work, we introduce the first scalable and accurate method to refine any given single-cell tree topology into a single-cell chronogram by estimating its branch lengths. To do this, we leverage a statistical model of CRISPR/Cas9 cutting with missing data, paired with a conservative version of maximum parsimony that reconstructs only the ancestral states that we are confident about. As part of our method, we propose a novel approach to represent and handle missing data - specifically, double-resection events - which greatly simplifies and speeds up branch length estimation without compromising quality. All this leads to a convex maximum likelihood estimation (MLE) problem that can be readily solved in seconds with off-the-shelf convex optimization solvers. To stabilize estimates in low-information regimes, we propose a simple penalized version of MLE using a minimum branch length and pseudocounts. We benchmark our method using simulations and show that it performs well on several tasks, outperforming more naive baselines. Our method, which we name 'ConvexML', is available through the cassiopeia open source Python package.
Collapse
Affiliation(s)
| | - Akshay Ravoor
- Computer Science Division, University of California, Berkeley
| | - Nir Yosef
- Computer Science Division, University of California, Berkeley
- Department of Systems Immunology, Weizmann Institute of Science
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley
- Department of Statistics, University of California, Berkeley
| |
Collapse
|
18
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
19
|
Kucharski R, Ellis N, Jurkowski TP, Hurd PJ, Maleszka R. The PWWP domain and the evolution of unique DNA methylation toolkits in Hymenoptera. iScience 2023; 26:108193. [PMID: 37920666 PMCID: PMC10618690 DOI: 10.1016/j.isci.2023.108193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
DNMT3 in Hymenoptera has a unique duplication of the essential PWWP domain. Using GST-tagged PWWP fusion proteins and histone arrays we show that these domains have gained new properties and represent the first case of PWWP domains binding to H3K27 chromatin modifications, including H3K27me3, a key modification that is important during development. Phylogenetic analyses of 107 genomes indicate that the duplicated PWWP domains separated into two sister clades, and their distinct binding capacities are supported by 3D modeling. Other features of this unique DNA methylation system include variable copies, losses, and duplications of DNMT1 and DNMT3, and combinatorial generations of DNMT3 isoforms including variants missing the catalytic domain. Some of these losses and duplications of are found only in parasitic wasps. We discuss our findings in the context of the crosstalk between DNA methylation and histone methylation, and the expanded potential of epigenomic modifications in Hymenoptera to drive evolutionary novelties.
Collapse
Affiliation(s)
- Robert Kucharski
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Nancy Ellis
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Paul J. Hurd
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
20
|
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A. A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 2023; 14:1293707. [PMID: 38045027 PMCID: PMC10690426 DOI: 10.3389/fmicb.2023.1293707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - David R. Arahal
- Departament of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
21
|
Flores-Téllez D, Tankmar MD, von Bülow S, Chen J, Lindorff-Larsen K, Brodersen P, Arribas-Hernández L. Insights into the conservation and diversification of the molecular functions of YTHDF proteins. PLoS Genet 2023; 19:e1010980. [PMID: 37816028 PMCID: PMC10617740 DOI: 10.1371/journal.pgen.1010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/31/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
YT521-B homology (YTH) domain proteins act as readers of N6-methyladenosine (m6A) in mRNA. Members of the YTHDF clade determine properties of m6A-containing mRNAs in the cytoplasm. Vertebrates encode three YTHDF proteins whose possible functional specialization is debated. In land plants, the YTHDF clade has expanded from one member in basal lineages to eleven so-called EVOLUTIONARILY CONSERVED C-TERMINAL REGION1-11 (ECT1-11) proteins in Arabidopsis thaliana, named after the conserved YTH domain placed behind a long N-terminal intrinsically disordered region (IDR). ECT2, ECT3 and ECT4 show genetic redundancy in stimulation of primed stem cell division, but the origin and implications of YTHDF expansion in higher plants are unknown, as it is unclear whether it involves acquisition of fundamentally different molecular properties, in particular of their divergent IDRs. Here, we use functional complementation of ect2/ect3/ect4 mutants to test whether different YTHDF proteins can perform the same function when similarly expressed in leaf primordia. We show that stimulation of primordial cell division relies on an ancestral molecular function of the m6A-YTHDF axis in land plants that is present in bryophytes and is conserved over YTHDF diversification, as it appears in all major clades of YTHDF proteins in flowering plants. Importantly, although our results indicate that the YTH domains of all arabidopsis ECT proteins have m6A-binding capacity, lineage-specific neo-functionalization of ECT1, ECT9 and ECT11 happened after late duplication events, and involves altered properties of both the YTH domains, and, especially, of the IDRs. We also identify two biophysical properties recurrent in IDRs of YTHDF proteins able to complement ect2 ect3 ect4 mutants, a clear phase separation propensity and a charge distribution that creates electric dipoles. Human and fly YTHDFs do not have IDRs with this combination of properties and cannot replace ECT2/3/4 function in arabidopsis, perhaps suggesting different molecular activities of YTHDF proteins between major taxa.
Collapse
Affiliation(s)
- Daniel Flores-Téllez
- University of Copenhagen, Biology Department. Copenhagen, Denmark
- Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales. Pozuelo de Alarcón (Madrid), Spain
| | | | - Sören von Bülow
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | - Junyu Chen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | | - Peter Brodersen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | |
Collapse
|
22
|
Li YD, Engel MS, Tihelka E, Cai C. Phylogenomics of weevils revisited: data curation and modelling compositional heterogeneity. Biol Lett 2023; 19:20230307. [PMID: 37727076 PMCID: PMC10509570 DOI: 10.1098/rsbl.2023.0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Weevils represent one of the most prolific radiations of beetles and the most diverse group of herbivores on land. The phylogeny of weevils (Curculionoidea) has received extensive attention, and a largely satisfactory framework for their interfamilial relationships has been established. However, a recent phylogenomic study of Curculionoidea based on anchored hybrid enrichment (AHE) data yielded an abnormal placement for the family Belidae (strongly supported as sister to Nemonychidae + Anthribidae). Here we reanalyse the genome-scale AHE data for Curculionoidea using various models of molecular evolution and data filtering methods to mitigate anticipated systematic errors and reduce compositional heterogeneity. When analysed with the infinite mixture model CAT-GTR or using appropriately filtered datasets, Belidae are always recovered as sister to the clade (Attelabidae, (Caridae, (Brentidae, Curculionidae))), which is congruent with studies based on morphology and other sources of molecular data. Although the relationships of the 'higher Curculionidae' remain challenging to resolve, we provide a consistent and robust backbone phylogeny of weevils. Our extensive analyses emphasize the significance of data curation and modelling across-site compositional heterogeneity in phylogenomic studies.
Collapse
Affiliation(s)
- Yan-Da Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michael S. Engel
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| | - Erik Tihelka
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
23
|
Prillo S, Deng Y, Boyeau P, Li X, Chen PY, Song YS. CherryML: scalable maximum likelihood estimation of phylogenetic models. Nat Methods 2023; 20:1232-1236. [PMID: 37386188 PMCID: PMC10644697 DOI: 10.1038/s41592-023-01917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Phylogenetic models of molecular evolution are central to numerous biological applications spanning diverse timescales, from hundreds of millions of years involving orthologous proteins to just tens of days relating to single cells within an organism. A fundamental problem in these applications is estimating model parameters, for which maximum likelihood estimation is typically employed. Unfortunately, maximum likelihood estimation is a computationally expensive task, in some cases prohibitively so. To address this challenge, we here introduce CherryML, a broadly applicable method that achieves several orders of magnitude speedup by using a quantized composite likelihood over cherries in the trees. The massive speedup offered by our method should enable researchers to consider more complex and biologically realistic models than previously possible. Here we demonstrate CherryML's utility by applying it to estimate a general 400 × 400 rate matrix for residue-residue coevolution at contact sites in three-dimensional protein structures; we estimate that using current state-of-the-art methods such as the expectation-maximization algorithm for the same task would take >100,000 times longer.
Collapse
Affiliation(s)
- Sebastian Prillo
- Computer Science Division, University of California, Berkeley, CA, USA
| | - Yun Deng
- Graduate Group in Computational Biology, University of California, Berkeley, CA, USA
| | - Pierre Boyeau
- Computer Science Division, University of California, Berkeley, CA, USA
| | - Xingyu Li
- Computer Science Division, University of California, Berkeley, CA, USA
| | - Po-Yen Chen
- Computer Science Division, University of California, Berkeley, CA, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, CA, USA.
- Department of Statistics, University of California, Berkeley, CA, USA.
| |
Collapse
|
24
|
Flipphi M, Márton A, Bíró V, Ág N, Sándor E, Fekete E, Karaffa L. Mutations in the Second Alternative Oxidase Gene: A New Approach to Group Aspergillus niger Strains. J Fungi (Basel) 2023; 9:jof9050570. [PMID: 37233281 DOI: 10.3390/jof9050570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Alternative oxidase is a terminal oxidase in the branched mitochondrial electron transport chain of most fungi including Aspergillus niger (subgenus Circumdati, section Nigri). A second, paralogous aox gene (aoxB) is extant in some A. niger isolates but also present in two divergent species of the subgenus Nidulantes-A. calidoustus and A. implicatus-as well as in Penicillium swiecickii. Black aspergilli are cosmopolitan opportunistic fungi that can cause diverse mycoses and acute aspergillosis in immunocompromised individuals. Amongst the approximately 75 genome-sequenced A. niger strains, aoxB features considerable sequence variation. Five mutations were identified that rationally affect transcription or function or terminally modify the gene product. One mutant allele that occurs in CBS 513.88 and A. niger neotype strain CBS 554.65 involves a chromosomal deletion that removes exon 1 and intron 1 from aoxB. Another aoxB allele results from retrotransposon integration. Three other alleles result from point mutations: a missense mutation of the start codon, a frameshift, and a nonsense mutation. A. niger strain ATCC 1015 has a full-length aoxB gene. The A. niger sensu stricto complex can thus be subdivided into six taxa according to extant aoxB allele, which may facilitate rapid and accurate identification of individual species.
Collapse
Affiliation(s)
- Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Alexandra Márton
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Ág
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
25
|
Dang CC, Vinh LS. Estimating amino acid substitution models for metazoan evolutionary studies. J Evol Biol 2023; 36:499-506. [PMID: 36598184 DOI: 10.1111/jeb.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023]
Abstract
Amino acid substitution models represent the substitution rates among amino acids during the evolution of protein sequences. The models are a prerequisite for maximum likelihood or Bayesian methods to analyse the phylogenetic relationships among species based on their protein sequences. Estimating amino acid substitution models requires large protein datasets and intensive computation. In this paper, we presented the estimation of both time-reversible model (Q.met) and time non-reversible model (NQ.met) for multicellular animals (Metazoa). Analyses showed that the Q.met and NQ.met models were significantly better than existing models in analysing metazoan protein sequences. Moreover, the time non-reversible model NQ.met enables us to reconstruct the rooted phylogenetic tree for Metazoa. We recommend researchers to employ the Q.met and NQ.met models in analysing metazoan protein sequences.
Collapse
Affiliation(s)
- Cuong Cao Dang
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Le Sy Vinh
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
26
|
Ragionieri L, Zúñiga-Reinoso Á, Bläser M, Predel R. Phylogenomics of darkling beetles (Coleoptera: Tenebrionidae) from the Atacama Desert. PeerJ 2023; 11:e14848. [PMID: 36855434 PMCID: PMC9968461 DOI: 10.7717/peerj.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] Open
Abstract
Background Tenebrionidae (Insecta: Coleoptera) are a conspicuous component of desert fauna worldwide. In these ecosystems, they are significantly responsible for nutrient cycling and show remarkable morphological and physiological adaptations. Nevertheless, Tenebrionidae colonizing individual deserts have repeatedly emerged from different lineages. The goal of our study was to gain insights into the phylogenetic relationships of the tenebrionid genera from the Atacama Desert and how these taxa are related to the globally distributed Tenebrionidae. Methods We used newly generated transcriptome data (47 tribes, 7 of 11 subfamilies) that allowed for a comprehensive phylogenomic analysis of the tenebrionid fauna of this hyperarid desert and fills a gap in our knowledge of the highly diversified Tenebrionidae. We examined two independent data sets known to be suitable for phylogenomic reconstructions. One is based on 35 neuropeptide precursors, the other on 1,742 orthologous genes shared among Coleoptera. Results The majority of Atacama genera are placed into three groups, two of which belong to typical South American lineages within the Pimeliinae. While the data support the monophyly of the Physogasterini, Nycteliini and Scotobiini, this does not hold for the Atacama genera of Edrotini, Epitragini, Evaniosomini, Praociini, Stenosini, Thinobatini, and Trilobocarini. A suggested very close relationship of Psammetichus with the Mediterranean Leptoderis also could not be confirmed. We also provide hints regarding the phylogenetic relationships of the Caenocrypticini, which occur both in South America and southern Africa. Apart from the focus on the Tenebrionidae from the Atacama Desert, we found a striking synapomorphy grouping Alleculinae, Blaptinae, Diaperinae, Stenochinae, and several taxa of Tenebrioninae, but not Tenebrio and Tribolium. This character, an insertion in the myosuppressin gene, defines a higher-level monophyletic group within the Tenebrionidae. Conclusion Transcriptome data allow a comprehensive phylogenomic analysis of the tenebrionid fauna of the Atacama Desert, which represents one of the seven major endemic tribal areas in the world for Tenebrionidae. Most Atacama genera could be placed in three lineages typical of South America; monophyly is not supported for several tribes based on molecular data, suggesting that a detailed systematic revision of several groups is necessary.
Collapse
Affiliation(s)
- Lapo Ragionieri
- University of Cologne, Institute of Zoology, Cologne, Germany
| | | | - Marcel Bläser
- University of Cologne, Institute of Zoology, Cologne, Germany
| | - Reinhard Predel
- University of Cologne, Institute of Zoology, Cologne, Germany
| |
Collapse
|
27
|
The Structure of Evolutionary Model Space for Proteins across the Tree of Life. BIOLOGY 2023; 12:biology12020282. [PMID: 36829559 PMCID: PMC9952988 DOI: 10.3390/biology12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The factors that determine the relative rates of amino acid substitution during protein evolution are complex and known to vary among taxa. We estimated relative exchangeabilities for pairs of amino acids from clades spread across the tree of life and assessed the historical signal in the distances among these clade-specific models. We separately trained these models on collections of arbitrarily selected protein alignments and on ribosomal protein alignments. In both cases, we found a clear separation between the models trained using multiple sequence alignments from bacterial clades and the models trained on archaeal and eukaryotic data. We assessed the predictive power of our novel clade-specific models of sequence evolution by asking whether fit to the models could be used to identify the source of multiple sequence alignments. Model fit was generally able to correctly classify protein alignments at the level of domain (bacterial versus archaeal), but the accuracy of classification at finer scales was much lower. The only exceptions to this were the relatively high classification accuracy for two archaeal lineages: Halobacteriaceae and Thermoprotei. Genomic GC content had a modest impact on relative exchangeabilities despite having a large impact on amino acid frequencies. Relative exchangeabilities involving aromatic residues exhibited the largest differences among models. There were a small number of exchangeabilities that exhibited large differences in comparisons among major clades and between generalized models and ribosomal protein models. Taken as a whole, these results reveal that a small number of relative exchangeabilities are responsible for much of the structure of the "model space" for protein sequence evolution. The clade-specific models we generated may be useful tools for protein phylogenetics, and the structure of evolutionary model space that they revealed has implications for phylogenomic inference across the tree of life.
Collapse
|
28
|
Raicu AM, Kadiyala D, Niblock M, Jain A, Yang Y, Bird KM, Bertholf K, Seenivasan A, Siddiq M, Arnosti DN. The Cynosure of CtBP: Evolution of a Bilaterian Transcriptional Corepressor. Mol Biol Evol 2023; 40:msad003. [PMID: 36625090 PMCID: PMC9907507 DOI: 10.1093/molbev/msad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Evolution of sequence-specific transcription factors clearly drives lineage-specific innovations, but less is known about how changes in the central transcriptional machinery may contribute to evolutionary transformations. In particular, transcriptional regulators are rich in intrinsically disordered regions that appear to be magnets for evolutionary innovation. The C-terminal Binding Protein (CtBP) is a transcriptional corepressor derived from an ancestral lineage of alpha hydroxyacid dehydrogenases; it is found in mammals and invertebrates, and features a core NAD-binding domain as well as an unstructured C-terminus (CTD) of unknown function. CtBP can act on promoters and enhancers to repress transcription through chromatin-linked mechanisms. Our comparative phylogenetic study shows that CtBP is a bilaterian innovation whose CTD of about 100 residues is present in almost all orthologs. CtBP CTDs contain conserved blocks of residues and retain a predicted disordered property, despite having variations in the primary sequence. Interestingly, the structure of the C-terminus has undergone radical transformation independently in certain lineages including flatworms and nematodes. Also contributing to CTD diversity is the production of myriad alternative RNA splicing products, including the production of "short" tailless forms of CtBP in Drosophila. Additional diversity stems from multiple gene duplications in vertebrates, where up to five CtBP orthologs have been observed. Vertebrate lineages show fewer major modifications in the unstructured CTD, possibly because gene regulatory constraints of the vertebrate body plan place specific constraints on this domain. Our study highlights the rich regulatory potential of this previously unstudied domain of a central transcriptional regulator.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Dhruva Kadiyala
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Madeline Niblock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | | | - Yahui Yang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kalynn M Bird
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kayla Bertholf
- Biochemistry and Molecular Biology Program, College of Wooster
| | - Akshay Seenivasan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Mohammad Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - David N Arnosti
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
29
|
Del Amparo R, González-Vázquez LD, Rodríguez-Moure L, Bastolla U, Arenas M. Consequences of Genetic Recombination on Protein Folding Stability. J Mol Evol 2023; 91:33-45. [PMID: 36463317 PMCID: PMC9849154 DOI: 10.1007/s00239-022-10080-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Genetic recombination is a common evolutionary mechanism that produces molecular diversity. However, its consequences on protein folding stability have not attracted the same attention as in the case of point mutations. Here, we studied the effects of homologous recombination on the computationally predicted protein folding stability for several protein families, finding less detrimental effects than we previously expected. Although recombination can affect multiple protein sites, we found that the fraction of recombined proteins that are eliminated by negative selection because of insufficient stability is not significantly larger than the corresponding fraction of proteins produced by mutation events. Indeed, although recombination disrupts epistatic interactions, the mean stability of recombinant proteins is not lower than that of their parents. On the other hand, the difference of stability between recombined proteins is amplified with respect to the parents, promoting phenotypic diversity. As a result, at least one third of recombined proteins present stability between those of their parents, and a substantial fraction have higher or lower stability than those of both parents. As expected, we found that parents with similar sequences tend to produce recombined proteins with stability close to that of the parents. Finally, the simulation of protein evolution along the ancestral recombination graph with empirical substitution models commonly used in phylogenetics, which ignore constraints on protein folding stability, showed that recombination favors the decrease of folding stability, supporting the convenience of adopting structurally constrained models when possible for inferences of protein evolutionary histories with recombination.
Collapse
Affiliation(s)
- Roberto Del Amparo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain ,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, 36310 Vigo, Spain
| | - Luis Daniel González-Vázquez
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain ,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, 36310 Vigo, Spain
| | - Laura Rodríguez-Moure
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain ,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, 36310 Vigo, Spain
| | - Ugo Bastolla
- Centre for Molecular Biology Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain ,Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, 36310 Vigo, Spain ,Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
30
|
Seudre O, Martín-Zamora FM, Rapisarda V, Luqman I, Carrillo-Baltodano AM, Martín-Durán JM. The Fox Gene Repertoire in the Annelid Owenia fusiformis Reveals Multiple Expansions of the foxQ2 Class in Spiralia. Genome Biol Evol 2022; 14:evac139. [PMID: 36099507 PMCID: PMC9539403 DOI: 10.1093/gbe/evac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia-a large clade of invertebrate animals including molluscs and annelids-are scarce but much needed to better understand the evolutionary history of this gene family. Here, we reconstruct and functionally characterize the Fox gene complement in the annelid Owenia fusiformis, a slow evolving species and member of the sister group to all remaining annelids. The genome of O. fusiformis contains at least a single ortholog for 20 of the 22 Fox gene classes that are ancestral to Bilateria, including an ortholog of the recently discovered foxT class. Temporal and spatial expression dynamics reveal a conserved role of Fox genes in gut formation, mesoderm patterning, and apical organ and cilia formation in Annelida and Spiralia. Moreover, we uncover an ancestral expansion of foxQ2 genes in Spiralia, represented by 11 paralogs in O. fusiformis. Notably, although all foxQ2 copies have apical expression in O. fusiformis, they show variable spatial domains and staggered temporal activation, which suggest cooperation and sub-functionalization among foxQ2 genes for the development of apical fates in this annelid. Altogether, our study informs the evolution and developmental roles of Fox genes in Annelida and Spiralia generally, providing the basis to explore how regulatory changes in Fox gene expression might have contributed to developmental and morphological diversification in Spiralia.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Valentina Rapisarda
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Imran Luqman
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| |
Collapse
|
31
|
Finding a home for the ram’s horn squid: phylogenomic analyses support Spirula spirula (Cephalopoda: Decapodiformes) as a close relative of Oegopsida. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Uribe F, Henríquez-Valencia C, Arenas-M A, Medina J, Vidal EA, Canales J. Evolutionary and Gene Expression Analyses Reveal New Insights into the Role of LSU Gene-Family in Plant Responses to Sulfate-Deficiency. PLANTS 2022; 11:plants11121526. [PMID: 35736678 PMCID: PMC9229004 DOI: 10.3390/plants11121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
LSU proteins belong to a plant-specific gene family initially characterized by their strong induction in response to sulfate (S) deficiency. In the last few years, LSUs have arisen as relevant hubs in protein–protein interaction networks, in which they play relevant roles in the response to abiotic and biotic stresses. Most of our knowledge on LSU genomic organization, expression and function comes from studies in Arabidopsis and tobacco, while little is known about the LSU gene repertoire and evolution of this family in land plants. In this work, a total of 270 LSU family members were identified using 134 land plant species with whole-genome sequences available. Phylogenetic analysis revealed that LSU genes belong to a Spermatophyta-specific gene family, and their homologs are distributed in three major groups, two for dicotyledons and one group for monocotyledons. Protein sequence analyses showed four new motifs that further support the subgroup classification by phylogenetic analyses. Moreover, we analyzed the expression of LSU genes in one representative species of each phylogenetic group (wheat, tomato and Arabidopsis) and found a conserved response to S deficiency, suggesting that these genes might play a key role in S stress responses. In summary, our results indicate that LSU genes belong to the Spermatophyta-specific gene family and their response to S deficiency is conserved in angiosperms.
Collapse
Affiliation(s)
- Felipe Uribe
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (F.U.); (C.H.-V.); (A.A.-M.)
| | - Carlos Henríquez-Valencia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (F.U.); (C.H.-V.); (A.A.-M.)
| | - Anita Arenas-M
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (F.U.); (C.H.-V.); (A.A.-M.)
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile;
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, INIA-CSIC-Universidad Politécnica de Madrid, 28223 Madrid, Spain;
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile;
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (F.U.); (C.H.-V.); (A.A.-M.)
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile;
- Correspondence:
| |
Collapse
|
33
|
Dynamic Patterns of Sex Chromosome Evolution in Neognath Birds: Many Independent Barriers to Recombination at the ATP5F1A Locus. BIRDS 2022. [DOI: 10.3390/birds3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Avian sex chromosomes evolved after the divergence of birds and crocodilians from their common ancestor, so they are younger than the better-studied chromosomes of mammals. It has long been recognized that there may have been several stages to the evolution of avian sex chromosomes. For example, the CHD1 undergoes recombination in paleognaths but not neognaths. Genome assemblies have suggested that there may be variation in the timing of barriers to recombination among Neognathae, but there remains little understanding of the extent of this variability. Here, we look at partial sequences of ATP5F1A, which is on the avian Z and W chromosomes. It is known that recombination of this gene has independently ceased in Galliformes, Anseriformes, and at least five neoavian orders, but whether there are other independent cessations of recombination among Neoaves is not understood. We analyzed a combination of data extracted from published chromosomal-level genomes with data collected using PCR and cloning to identify Z and W copies in 22 orders. Our results suggest that there may be at least 19 independent cessations of recombination within Neognathae, and 3 clades that may still be undergoing recombination (or have only recently ceased recombination). Analyses of ATP5F1A protein sequences revealed an increased amino acid substitution rate for W chromosome gametologs, suggesting relaxed purifying selection on the W chromosome. Supporting this hypothesis, we found that the increased substitution rate was particularly pronounced for buried residues, which are expected to be more strongly constrained by purifying selection. This highlights the dynamic nature of avian sex chromosomes, and that this level of variation among clades means they should be a good system to understand sex chromosome evolution.
Collapse
|
34
|
Dang CC, Minh BQ, McShea H, Masel J, James JE, Vinh LS, Lanfear R. OUP accepted manuscript. Syst Biol 2022; 71:1110-1123. [PMID: 35139203 PMCID: PMC9366462 DOI: 10.1093/sysbio/syac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/30/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cuong Cao Dang
- Faculty of Information Technology, University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam
| | - Bui Quang Minh
- Computational Phylogenomics Lab, School of Computing, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hanon McShea
- Department of Earth System Science, School of Earth, Energy, and Environmental Sciences, Stanford University, Palo Alto, CA 94305, USA
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jennifer Eleanor James
- Department of Ecology and Genetics, Plant Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, SE-752 36, Sweden
| | - Le Sy Vinh
- Correspondence to be sent to: Faculty of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam; E-mail: Cuong Cao Dang and Bui Quang Minh contributed equally to the work.
| | - Robert Lanfear
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
35
|
Del Amparo R, Arenas M. HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models. Genes (Basel) 2021; 13:61. [PMID: 35052404 PMCID: PMC8774313 DOI: 10.3390/genes13010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Diverse phylogenetic methods require a substitution model of evolution that should mimic, as accurately as possible, the real substitution process. At the protein level, empirical substitution models have traditionally been based on a large number of different proteins from particular taxonomic levels. However, these models assume that all of the proteins of a taxonomic level evolve under the same substitution patterns. We believe that this assumption is highly unrealistic and should be relaxed by considering protein-specific substitution models that account for protein-specific selection processes. In order to test this hypothesis, we inferred and evaluated four new empirical substitution models for the protease and integrase of HIV and other viruses. We found that these models more accurately fit, compared with any of the currently available empirical substitution models, the evolutionary process of these proteins. We conclude that evolutionary inferences from protein sequences are more accurate if they are based on protein-specific substitution models rather than taxonomic-specific (generalist) substitution models. We also present four new empirical substitution models of protein evolution that could be useful for phylogenetic inferences of viral protease and integrase.
Collapse
Affiliation(s)
- Roberto Del Amparo
- Centro de Investigacións Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Miguel Arenas
- Centro de Investigacións Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
36
|
Lewis AJO, Hegde RS. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 2021; 19:266. [PMID: 34911545 PMCID: PMC8675477 DOI: 10.1186/s12915-021-01171-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.
Collapse
Affiliation(s)
- Aaron J O Lewis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|