1
|
Rannala B, Yang Z. Reading tree leaves: inferring speciation anfd extinction processes using phylogenies. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230309. [PMID: 39976406 DOI: 10.1098/rstb.2023.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 02/21/2025] Open
Abstract
The birth-death process (BDP) is widely used in evolutionary biology as a model for generating phylogenetic trees of species. The generalized birth-death process (GBDP) allows rate variation over time, with speciation and extinction rates to be arbitrary functions of time. Here we review the probability theory underpinning the GBDP as a model of cladogenesis and recent findings concerning its identifiability. The GBDP with arbitrary continuous rate functions has been shown to be non-identifiable from lineage-through-time data: even with species phylogenies of infinite size the parameters cannot be estimated. However, a restricted class of BDPs with piecewise-constant rates has been shown to be identifiable. We review and illustrate these results using simple examples and discuss their implications for biologists interested in inferring the past tempo and mode of evolution using reconstructed phylogenetic trees.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Jin ZT, Hodel RGJ, Ma DK, Wang H, Liu GN, Ren C, Ge BJ, Fan Q, Jin SH, Xu C, Wu J, Liu BB. Nightmare or delight: Taxonomic circumscription meets reticulate evolution in the phylogenomic era. Mol Phylogenet Evol 2023; 189:107914. [PMID: 37666378 DOI: 10.1016/j.ympev.2023.107914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Phylogenetic studies in the phylogenomics era have demonstrated that reticulate evolution greatly impedes the accuracy of phylogenetic inference, and consequently can obscure taxonomic treatments. However, the systematics community lacks a broadly applicable strategy for taxonomic delimitation in groups characterized by pervasive reticulate evolution. The red-fruit genus, Stranvaesia, provides an ideal model to examine the influence of reticulation on generic circumscription, particularly where hybridization and allopolyploidy dominate the evolutionary history. In this study, we conducted phylogenomic analyses integrating data from hundreds of single-copy nuclear (SCN) genes and plastomes, and interrogated nuclear paralogs to clarify the inter/intra-generic relationship of Stranvaesia and its allies in the framework of Maleae. Analyses of phylogenomic discord and phylogenetic networks showed that allopolyploidization and introgression promoted the origin and diversification of the Stranvaesia clade, a conclusion further bolstered by cytonuclear and gene tree discordance. With a well-inferred phylogenetic backbone, we propose an updated generic delimitation of Stranvaesia and introduce a new genus, Weniomeles. This new genus is distinguished by its purple-black fruits, thorns trunk and/or branches, and a distinctive fruit core anatomy characterized by multilocular separated by a layer of sclereids and a cluster of sclereids at the top of the locules. Through this study, we highlight a broadly-applicable workflow that underscores the significance of reticulate evolution analyses in shaping taxonomic revisions from phylogenomic data.
Collapse
Affiliation(s)
- Ze-Tao Jin
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Dai-Kun Ma
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | | | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Bin-Jie Ge
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shui-Hu Jin
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
3
|
Abegg AD, Santos AP, Costa HC, Battilana J, Graboski R, Vianna FSL, Azevedo WS, Fagundes NJR, Castille CM, Prado PC, Bonatto SL, Zaher H, Grazziotin FG. Increasing taxon sampling suggests a complete taxonomic rearrangement in Echinantherini (Serpentes: Dipsadidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.969263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the recent advances on the relationship of its major groups, the systematics of the rich fauna of Neotropical snakes is far from being a consensus. In this sense, derived groups presenting continental distributions have represented a main challenge. The taxonomy of the snake tribe Echinantherini is one of the most contentious among the diverse family known as Dipsadidae. The tribe is poorly sampled in phylogenetic studies, resulting in conflicting hypotheses of relationships among its taxa. Moreover, several rare and micro endemic species of Echinantherini have never been evaluated within a comprehensive phylogenetic framework. Here, we assess for the first time the phylogenetic position of the rare Echinanthera amoena within Echinantherini. We based our analyses on a comprehensive multilocus dataset including 14 of the 16 species described for the tribe. Our results support the monophyly of Echinantherini and strongly indicate E. amoena as a unique lineage, phylogenetically positioned apart from all other congeners. From the three current genera (Echinanthera, Taeniophallus, and Sordellina) our results indicate that Echinanthera and Taeniophallus are paraphyletic, since the T. affinis species group is positioned as sister to Echinanthera (except E. amoena) clustering apart from the clade formed by the T. brevirostris and T. occipitalis groups. We describe new genera for the T. affinis and T. occipitalis species groups and an additional monospecific genus for E. amoena. Although we did not evaluate the phylogenetic position of T. nebularis, we described a new genus and removed it from Echinantherini since its morphology strikingly departs from all species now included in the tribe. Finally, we redefine the genera Echinanthera and Taeniophallus and we provide comments about further directions to study the biogeography and the evolution of morphological traits in Echinantherini.
Collapse
|
4
|
Nowak U, Wittkamp MF, Clamor A, Lincoln TM. Using the Ball-in-Bowl Metaphor to Outline an Integrative Framework for Understanding Dysregulated Emotion. Front Psychiatry 2021; 12:626698. [PMID: 34434124 PMCID: PMC8380846 DOI: 10.3389/fpsyt.2021.626698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dysregulated emotion plays an important role for mental health problems. To elucidate the underlying mechanisms, researchers have focused on the domains of strategy-based emotion regulation, psychophysiological self-regulation, emotion evaluations, and resulting emotion dynamics. So far, these four domains have been looked at in relative isolation from each other, and their reciprocal influences and interactive effects have seldom been considered. This domain-specific focus constrains the progress the field is able to make. Here, we aim to pave the way towards more cross-domain, integrative research focused on understanding the raised reciprocal influences and interactive effects of strategy-based emotion-regulation, psychophysiological self-regulation, emotion evaluations, and emotion dynamics. To this aim, we first summarize for each of these domains the most influential theoretical models, the research questions they have stimulated, and their strengths and weaknesses for research and clinical practice. We then introduce the metaphor of a ball in a bowl that we use as a basis for outlining an integrative framework of dysregulated emotion. We illustrate how such a framework can inspire new research on the reciprocal influences and interactions between the different domains of dysregulated emotion and how it can help to theoretically explain a broader array of findings, such as the high levels of negative affect in clinical populations that have not been fully accounted for by deficits in strategy-based emotion regulation and the positive long-term consequences of accepting and tolerating emotions. Finally, we show how it can facilitate individualized emotion regulation interventions that are tailored to the specific regulatory impairments of the individual patient.
Collapse
|
5
|
Harris HMB, Hill C. A Place for Viruses on the Tree of Life. Front Microbiol 2021; 11:604048. [PMID: 33519747 PMCID: PMC7840587 DOI: 10.3389/fmicb.2020.604048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Viruses are ubiquitous. They infect almost every species and are probably the most abundant biological entities on the planet, yet they are excluded from the Tree of Life (ToL). However, there can be no doubt that viruses play a significant role in evolution, the force that facilitates all life on Earth. Conceptually, viruses are regarded by many as non-living entities that hijack living cells in order to propagate. A strict separation between living and non-living entities places viruses far from the ToL, but this may be theoretically unsound. Advances in sequencing technology and comparative genomics have expanded our understanding of the evolutionary relationships between viruses and cellular organisms. Genomic and metagenomic data have revealed that co-evolution between viral and cellular genomes involves frequent horizontal gene transfer and the occasional co-option of novel functions over evolutionary time. From the giant, ameba-infecting marine viruses to the tiny Porcine circovirus harboring only two genes, viruses and their cellular hosts are ecologically and evolutionarily intertwined. When deciding how, if, and where viruses should be placed on the ToL, we should remember that the Tree functions best as a model of biological evolution on Earth, and it is important that models themselves evolve with our increasing understanding of biological systems.
Collapse
Affiliation(s)
- Hugh M B Harris
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
How to Study Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Systematics Association Special Volumes. Cladistics 2020. [DOI: 10.1017/9781139047678.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Relationship Diagrams. Cladistics 2020. [DOI: 10.1017/9781139047678.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
The Separation of Classification and Phylogenetics. Cladistics 2020. [DOI: 10.1017/9781139047678.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Beyond Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
The Interrelationships of Organisms. Cladistics 2020. [DOI: 10.1017/9781139047678.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
How to Study Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Modern Artificial Methods and Raw Data. Cladistics 2020. [DOI: 10.1017/9781139047678.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Further Myths and More Misunderstandings. Cladistics 2020. [DOI: 10.1017/9781139047678.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Afterword. Cladistics 2020. [DOI: 10.1017/9781139047678.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Systematics: Exposing Myths. Cladistics 2020. [DOI: 10.1017/9781139047678.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Essentialism and Typology. Cladistics 2020. [DOI: 10.1017/9781139047678.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Beyond Classification: How to Study Phylogeny. Cladistics 2020. [DOI: 10.1017/9781139047678.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
How to Study Classification: ‘Total Evidence’ vs. ‘Consensus’, Character Congruence vs. Taxonomic Congruence, Simultaneous Analysis vs. Partitioned Data. Cladistics 2020. [DOI: 10.1017/9781139047678.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
What This Book Is About. Cladistics 2020. [DOI: 10.1017/9781139047678.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
How to Study Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
The Cladistic Programme. Cladistics 2020. [DOI: 10.1017/9781139047678.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Index. Cladistics 2020. [DOI: 10.1017/9781139047678.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Parameters of Classification: Ordo Ab Chao. Cladistics 2020. [DOI: 10.1017/9781139047678.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Monothetic and Polythetic Taxa. Cladistics 2020. [DOI: 10.1017/9781139047678.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
How to Study Classification: Consensus Techniques and General Classifications. Cladistics 2020. [DOI: 10.1017/9781139047678.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Non-taxa or the Absence of –Phyly: Paraphyly and Aphyly. Cladistics 2020. [DOI: 10.1017/9781139047678.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Introduction: Carving Nature at Its Joints, or Why Birds Are Not Dinosaurs and Men Are Not Apes. Cladistics 2020. [DOI: 10.1017/9781139047678.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Preface. Cladistics 2020. [DOI: 10.1017/9781139047678.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Gibbs AJ, Hajizadeh M, Ohshima K, Jones RA. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020; 12:E132. [PMID: 31979056 PMCID: PMC7077269 DOI: 10.3390/v12020132] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, encouraged by the dictum of Theodosius Dobzhansky that "Nothing in biology makes sense except in the light of evolution", we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000-30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%-64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants.
Collapse
Affiliation(s)
- Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| | - Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-2410 Korimoto, Kagoshima 890-0065, Japan
| | - Roger A.C. Jones
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
32
|
Reydon TAC. Taxa hold little information about organisms: Some inferential problems in biological systematics. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:40. [PMID: 31591647 DOI: 10.1007/s40656-019-0281-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The taxa that appear in biological classifications are commonly seen as representing information about the traits of their member organisms. This paper examines in what way taxa feature in the storage and retrieval of such information. I will argue that taxa do not actually store much information about the traits of their member organisms. Rather, I want to suggest, taxa should be understood as functioning to localize organisms in the genealogical network of life on Earth. Taxa store information about where organisms are localized in the network, which is important background information when it comes to establishing knowledge about organismal traits, but it is not itself information about these traits. The view of species and higher taxa that is proposed here follows from examining three problems that occur in contemporary biological systematics and are discussed here: the problem of generalization over taxa, the problem of phylogenetic inference, and the problematic nature of the Tree of Life.
Collapse
Affiliation(s)
- Thomas A C Reydon
- Institute of Philosophy & Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, Im Moore 21, 30167, Hannover, Germany.
| |
Collapse
|
33
|
Olson ME, Arroyo-Santos A, Vergara-Silva F. A User’s Guide to Metaphors In Ecology and Evolution. Trends Ecol Evol 2019; 34:605-615. [DOI: 10.1016/j.tree.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022]
|
34
|
|
35
|
Gross F, Kranke N, Meunier R. Pluralization through epistemic competition: scientific change in times of data-intensive biology. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:1. [PMID: 30603778 DOI: 10.1007/s40656-018-0239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
We present two case studies from contemporary biology in which we observe conflicts between established and emerging approaches. The first case study discusses the relation between molecular biology and systems biology regarding the explanation of cellular processes, while the second deals with phylogenetic systematics and the challenge posed by recent network approaches to established ideas of evolutionary processes. We show that the emergence of new fields is in both cases driven by the development of high-throughput data generation technologies and the transfer of modeling techniques from other fields. New and emerging views are characterized by different philosophies of nature, i.e. by different ontological and methodological assumptions and epistemic values and virtues. This results in a kind of conflict we call "epistemic competition" that manifests in two ways: On the one hand, opponents engage in mutual critique and defense of their fundamental assumptions. On the other hand, they compete for the acceptance and integration of the knowledge they provide by a broader scientific community. Despite an initial rhetoric of replacement, the views as well as the respective audiences come to be seen as more clearly distinct during the course of the debate. Hence, we observe-contrary to many other accounts of scientific change-that conflict results in the formation of new niches of research, leading to co-existence and perceived complementarity of approaches. Our model thus contributes to the understanding of the pluralization of the scientific landscape.
Collapse
Affiliation(s)
- Fridolin Gross
- Institut für Philosophie, Universität Kassel, Henschelstr. 2, 34127, Kassel, Germany
| | - Nina Kranke
- Philosophisches Seminar, Westfälische Wilhelms-Universität Münster, Domplatz 23, 48143, Münster, Germany.
| | - Robert Meunier
- Institut für Philosophie, Universität Kassel, Henschelstr. 2, 34127, Kassel, Germany
| |
Collapse
|
36
|
Solís-Lemus C, Bastide P, Ané C. PhyloNetworks: A Package for Phylogenetic Networks. Mol Biol Evol 2018; 34:3292-3298. [PMID: 28961984 DOI: 10.1093/molbev/msx235] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PhyloNetworks is a Julia package for the inference, manipulation, visualization, and use of phylogenetic networks in an interactive environment. Inference of phylogenetic networks is done with maximum pseudolikelihood from gene trees or multi-locus sequences (SNaQ), with possible bootstrap analysis. PhyloNetworks is the first software providing tools to summarize a set of networks (from a bootstrap or posterior sample) with measures of tree edge support, hybrid edge support, and hybrid node support. Networks can be used for phylogenetic comparative analysis of continuous traits, to estimate ancestral states or do a phylogenetic regression. The software is available in open source and with documentation at https://github.com/crsl4/PhyloNetworks.jl.
Collapse
Affiliation(s)
| | - Paul Bastide
- Unité Mixte de Recherche Mathématiques et Informatique Appliquées (MIA - Paris), AgroParisTech, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Paris, France.,Unité de Recherche Mathématiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Cécile Ané
- Department of Statistics, University of Wisconsin, Madison, WI.,Department of Botany, University of Wisconsin, Madison, WI
| |
Collapse
|
37
|
Rutherford S, Rossetto M, Bragg JG, McPherson H, Benson D, Bonser SP, Wilson PG. Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity (Edinb) 2018; 121:126-141. [PMID: 29632325 DOI: 10.1038/s41437-018-0073-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023] Open
Abstract
Speciation is a complex process that is fundamental to the origins of biological diversity. While there has been considerable progress in our understanding of speciation, there are still many unanswered questions, especially regarding barriers to gene flow in diverging populations. Eucalyptus is an appropriate system for investigating speciation mechanisms since it comprises species that are rapidly evolving across heterogeneous environments. We examined patterns of genetic variation within and among six closely related Eucalyptus species in subgenus Eucalyptus section Eucalyptus in south-eastern Australia (commonly known as the "green ashes"). We used reduced representation genome sequencing to genotype samples from populations across altitudinal and latitudinal gradients. We found one species, Eucalyptus cunninghamii, to be highly genetically differentiated from the others, and a population of mallees from Mount Banks to be genetically distinct and therefore likely to be a new undescribed species. Only modest levels of differentiation were found between all other species in the study. There was population structure within some species (e.g., E. obstans) corresponding to geographical factors, indicating that vicariance may have played a role in the evolution of the group. Overall, we found that lineages within the green ashes are differentiated to varying extents, from strongly diverged to much earlier stages of the speciation continuum. Furthermore, our results suggest the green ashes represent a group where a range of mechanisms (e.g., reticulate evolution and vicariance) have been operating in concert. These findings not only offer insights into recent speciation mechanisms in Eucalyptus, but also other species complexes.
Collapse
Affiliation(s)
- Susan Rutherford
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, Sydney, Australia. .,National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia.
| | - Maurizio Rossetto
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jason G Bragg
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Hannah McPherson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Doug Benson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, Sydney, Australia
| | - Peter G Wilson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
38
|
Darby CA, Stolzer M, Ropp PJ, Barker D, Durand D. Xenolog classification. Bioinformatics 2017; 33:640-649. [PMID: 27998934 PMCID: PMC5860392 DOI: 10.1093/bioinformatics/btw686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023] Open
Abstract
Motivation Orthology analysis is a fundamental tool in comparative genomics. Sophisticated methods have been developed to distinguish between orthologs and paralogs and to classify paralogs into subtypes depending on the duplication mechanism and timing, relative to speciation. However, no comparable framework exists for xenologs: gene pairs whose history, since their divergence, includes a horizontal transfer. Further, the diversity of gene pairs that meet this broad definition calls for classification of xenologs with similar properties into subtypes. Results We present a xenolog classification that uses phylogenetic reconciliation to assign each pair of genes to a class based on the event responsible for their divergence and the historical association between genes and species. Our classes distinguish between genes related through transfer alone and genes related through duplication and transfer. Further, they separate closely-related genes in distantly-related species from distantly-related genes in closely-related species. We present formal rules that assign gene pairs to specific xenolog classes, given a reconciled gene tree with an arbitrary number of duplications and transfers. These xenology classification rules have been implemented in software and tested on a collection of ∼13 000 prokaryotic gene families. In addition, we present a case study demonstrating the connection between xenolog classification and gene function prediction. Availability and Implementation The xenolog classification rules have been implemented in N otung 2.9, a freely available phylogenetic reconciliation software package. http://www.cs.cmu.edu/~durand/Notung . Gene trees are available at http://dx.doi.org/10.7488/ds/1503 . Contact durand@cmu.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Charlotte A Darby
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Maureen Stolzer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Patrick J Ropp
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Barker
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
39
|
Phylogeny mandalas for illustrating the Tree of Life. Mol Phylogenet Evol 2017; 117:168-178. [DOI: 10.1016/j.ympev.2016.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
40
|
Schliep K, Potts AJ, Morrison DA, Grimm GW. Intertwining phylogenetic trees and networks. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12760] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Matassi G. Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes. BMC Evol Biol 2017; 17:2. [PMID: 28049420 PMCID: PMC5209957 DOI: 10.1186/s12862-016-0850-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023] Open
Abstract
Background Rh50 proteins belong to the family of ammonia permeases together with their Amt/MEP homologs. Ammonia permeases increase the permeability of NH3/NH4+ across cell membranes and are believed to be involved in excretion of toxic ammonia and in the maintenance of pH homeostasis. RH50 genes are widespread in eukaryotes but absent in land plants and fungi, and remarkably rare in prokaryotes. The evolutionary history of RH50 genes in prokaryotes is just beginning to be unveiled. Results Here, a molecular phylogenetic approach suggests horizontal gene transfer (HGT) as a primary force driving the evolution and spread of RH50 among prokaryotes. In addition, the taxonomic distribution of the RH50 gene among prokaryotes turned out to be very narrow; a single-copy RH50 is present in the genome of only a small proportion of Bacteria, and, first evidence to date, in only three methanogens among Euryarchaea. The coexistence of RH50 and AMT in prokaryotes seems also a rare event. Finally, phylogenetic analyses were used to reconstruct the HGT network along which prokaryotic RH50 evolution has taken place. Conclusions The eukaryotic or bacterial “origin” of the RH50 gene remains unsolved. The RH50 prokaryotic HGT network suggests a preferential directionality of transfer from aerobic to anaerobic organisms. The observed HGT events between archaeal methanogens, anaerobic and aerobic ammonia-oxidizing bacteria suggest that syntrophic relationships play a major role in the structuring of the network, and point to oxygen minimum zones as an ecological niche that might be of crucial importance for HGT-driven evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0850-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giorgio Matassi
- Dipartimento di Scienze Agro-alimentari, Ambientali e Animali (DI4A), Università di Udine, Via delle Scienze, 206-33100, Udine, Italy.
| |
Collapse
|
42
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
43
|
Boto L. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer. J Biosci 2016; 40:465-72. [PMID: 25963270 DOI: 10.1007/s12038-015-9514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.
Collapse
Affiliation(s)
- Luis Boto
- Departamento de Biodiversidad y Biologia Evolutiva, Museo Nacional Ciencias Naturales, CSIC, C/ Jose Gutierrez Abascal 2, 28006, Madrid, Spain,
| |
Collapse
|
44
|
Solís-Lemus C, Yang M, Ané C. Inconsistency of Species Tree Methods under Gene Flow. Syst Biol 2016; 65:843-51. [DOI: 10.1093/sysbio/syw030] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
|
45
|
Abstract
A universal Tree of Life (TOL) has long been a goal of molecular phylogeneticists, but reticulation at the level of genes and possibly at the levels of cells and species renders any simple interpretation of such a TOL, especially as applied to prokaryotes, problematic.
Collapse
Affiliation(s)
- W. Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Tyler D. P. Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
46
|
Morrison DA. Genealogies: Pedigrees and Phylogenies are Reticulating Networks Not Just Divergent Trees. Evol Biol 2016. [DOI: 10.1007/s11692-016-9376-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Abstract
Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree-like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control.
Collapse
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Nora Besansky
- Department of Biological Sciences and Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
| | - Matthew W. Hahn
- Department of Biology and School of Informatics and ComputingIndiana UniversityBloomingtonINUSA
| |
Collapse
|
48
|
Morrison DA. Is the Tree of Life the Best Metaphor, Model, or Heuristic for Phylogenetics? Syst Biol 2014; 63:628-38. [DOI: 10.1093/sysbio/syu026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David A. Morrison
- Section for Parasitology, Swedish University of Agricultural Sciences, 751 89 Uppsala, Sweden
| |
Collapse
|
49
|
Warnow T. Large-Scale Multiple Sequence Alignment and Phylogeny Estimation. MODELS AND ALGORITHMS FOR GENOME EVOLUTION 2013. [DOI: 10.1007/978-1-4471-5298-9_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|