1
|
Chi Z, Zhang M, Fu B, Wang X, Yang H, Fang X, Li Z, Teng T, Shi B. Branched Short-Chain Fatty Acid-Rich Fermented Protein Food Improves the Growth and Intestinal Health by Regulating Gut Microbiota and Metabolites in Young Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21594-21609. [PMID: 39303156 DOI: 10.1021/acs.jafc.4c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.
Collapse
Affiliation(s)
- Zihan Chi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Botao Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Tang X, Zeng Y, Xiong K, Zhong J. Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Front Vet Sci 2024; 11:1429233. [PMID: 39132437 PMCID: PMC11310147 DOI: 10.3389/fvets.2024.1429233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The application of Bacillus spp. as probiotics in the swine industry, particularly for piglet production, has garnered significant attention in recent years. This review aimed to summarized the role and mechanisms of Bacillus spp. in promoting growth and maintaining gut health in piglets. Bacillus spp. can enhance intestinal barrier function by promoting the proliferation and repair of intestinal epithelial cells and increasing mucosal barrier integrity, thereby reducing the risk of pathogenic microbial invasion. Additionally, Bacillus spp. can activate the intestinal immune system of piglets, thereby enhancing the body's resistance to diseases. Moreover, Bacillus spp. can optimize the gut microbial community structure, enhance the activity of beneficial bacteria such as Lactobacillus, and inhibit the growth of harmful bacteria such as Escherichia coli, ultimately promoting piglet growth performance and improving feed efficiency. Bacillus spp. has advantages as well as challenges as an animal probiotic, and safety evaluation should be conducted when using the newly isolated Bacillus spp. This review provides a scientific basis for the application of Bacillus spp. in modern piglet production, highlighting their potential in improving the efficiency of livestock production and animal welfare.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| |
Collapse
|
3
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|
4
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
5
|
Lewton JR, Woodward AD, Moser RL, Thelen KM, Moeser AJ, Trottier NL, Tempelman RJ, Rozeboom DW. Effects of a multi-strain Bacillus subtilis-based direct-fed microbial on immunity markers and intestinal morphology in diets fed to weanling pigs. Transl Anim Sci 2022; 6:txac083. [PMID: 35854968 PMCID: PMC9278820 DOI: 10.1093/tas/txac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
The objective of this experiment was to evaluate the effects of a multi-strain Bacillus subtilis-based direct-fed microbial (DFM) on nursery pig health as indicated by intestinal mucosal and blood plasma immunological markers and intestinal morphology. Eighty pigs, of equal number of barrows and gilts (initial BW: 7.0 ± 0.60 kg), weaned at 21 ± 1 d of age were randomly allotted to sixteen pens, with five pigs per pen. Two dietary treatments were implemented, a basal control (CON) and a basal control plus DFM (CDFM). Both diets were corn, soybean meal, and distillers dried grains based and were formulated to meet or exceed all nutritional requirements (NRC, 2012) and manufactured on site. Diets were fed for 42 d. On d 21 and 42 of the experiment, one pig per pen was randomly selected and euthanized, with equal number of males and females represented. Blood samples were collected prior to euthanasia for assessment of plasma concentrations of immunoglobulin A (IgA) and intestinal fatty acid binding protein. Segments of the gastrointestinal tract including duodenum, jejunum, ileum, ascending and distal colon were removed for analysis of intestinal morphology, and levels of interleukin 6, interleukin 10 (IL-10), and tumor necrosis factor alpha. Jejunal villus height was greater in the CDFM pigs as compared with CON pigs (P = 0.02) and ascending colon crypt depth tended to be greater on d 21 (P = 0.10). Compared to CON, CDFM significantly increased overall plasma IgA (P = 0.03) (0.58 vs. 0.73 0.05 mg/mL, respectively), while it tended to increase plasma IgA (P = 0.06) on d 21 (0.34 vs. 0.54 ± 0.07 mg/mL, respectively) and tended to increase overall IL-10 (P = 0.10) in the jejunum (113 vs. 195 ± 35 pg/mL, respectively). Addition of a multi-strain Bacillus subtilis-based DFM may have an early benefit to nursery pig health status, observed through specific changes in morphology and both systemic and localized immunological markers.
Collapse
Affiliation(s)
- Jaron R Lewton
- Department of Animal Science, Michigan State University , East Lansing, MI 48824 , USA
| | | | | | - Kyan M Thelen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing, MI 48824 , USA
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing, MI 48824 , USA
| | - Nathalie L Trottier
- Department of Animal Science, Cornell University , Ithaca, NY 14853 , Greece
| | - Robert J Tempelman
- Department of Animal Science, Michigan State University , East Lansing, MI 48824 , USA
| | - Dale W Rozeboom
- Department of Animal Science, Michigan State University , East Lansing, MI 48824 , USA
| |
Collapse
|
6
|
Blachier F, Andriamihaja M, Kong XF. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? ANIMAL NUTRITION 2022; 9:110-118. [PMID: 35573094 PMCID: PMC9065739 DOI: 10.1016/j.aninu.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine, and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA, which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of note, the production of the AA-derived metabolites greatly depends on the amount of undigested polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa, isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate, hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will contribute to a better understanding of the potential causal links between diet-induced changes in the luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial barrier function and water/electrolyte absorption.
Collapse
|
7
|
Kim YJ, Cho SB, Song MH, Lee SI, Hong SM, Yun W, Lee JH, Oh HJ, Chang SY, An JW, Go YB, Song DC, Cho HA, Kim HB, Cho JH. Effects of different Bacillus licheniformis and Bacillus subtilis
ratios on nutrient digestibility, fecal microflora, and gas emissions of growing
pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:291-301. [PMID: 35530405 PMCID: PMC9039954 DOI: 10.5187/jast.2022.e12] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to evaluate the effects of different mixing
ratios of Bacillus licheniformis and Bacillus
subtilis in diets on nutrient digestibility, fecal microflora, and
odor gas emissions of growing pigs. A total of four crossbred ([Landrace
× Yorkshire] × Duroc) barrows with average body weight (BW) of
41.2 ± 0.7 kg were randomly allotted four diets over four periods in a 4
× 4 Latin square design. Treatments were as follows: Control (CON, basal
diet), CON + 0.2% probiotic complex (L4S6, B. licheniformis and
B. subtilis at a 4:6 ratio), CON + 0.2% probiotic complex
(L5S5, B. licheniformis and B. subtilis at a
5:5 ratio), CON + 0.2% probiotic complex (L6S4, B.
licheniformis and B. subtilis at a 6:4 ratio).
Dietary probiotic supplementation showed higher crude protein (CP) digestibility
values and lower Escherichia coli counts in fecal samples than
the CON group (p < 0.05). There was no significant
difference in NH3 or H2S emission until day 3. The
positive effect of H2S and NH3 emissions was detected
earlier with the L4S6 and L5S5 compared to the L6S4, which had a lower ratio of
B. subtilis. Both the L4S6 and L5S5 probiotic complexes
significantly decreased the fecal H2S and NH3 emission in
days 4 and 6 (p < 0.05). On day 7, all probiotic
complexes decreased (p < 0.05) H2S and
NH3 emissions than the CON group. Our results agreed that the
dietary supplementation of Bacillus licheniformis and
Bacillus subtilis complexes in growing pigs can
significantly improve CP digestibility and reduce fecal E. coli
counts, NH3 and H2S emissions. Notably, the higher mixing
ratio of Bacillus subtilis in probiotic supplementation is more
effective in reducing the odor of manure.
Collapse
Affiliation(s)
- Yong Ju Kim
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Sung Bo Cho
- Traditional Mongolian Medicine Research
Institute, Inner Mongolia University for Nationalities,
Tongliao 028000, China
| | - Min Ho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Sung Il Lee
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | | | - Won Yun
- Woosung Feed Co., Ltd.,
Daejeon 34379, Korea
| | - Ji Hwan Lee
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Han Jin Oh
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Se Yeon Chang
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Jae Woo An
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Young Bin Go
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Dong Cheol Song
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Hyun Ah Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Hyeun Bum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: Hyeun Bum Kim, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3653, E-mail:
| | - Jin Ho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
- Corresponding author: Jin Ho Cho, Division of Food
and Animal Science, Chungbuk National University, Cheongju 28644, Korea. Tel:
+82-43-261-2544, E-mail:
| |
Collapse
|