1
|
Cushman RA, Rosasco SL, McCarthy KL, Snider AP, Perry GA, Lents CA. Advances in our understanding of the estrous cycle and applications for improving targeted reproductive management in livestock. Domest Anim Endocrinol 2025; 91:106912. [PMID: 39818168 DOI: 10.1016/j.domaniend.2025.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The scientific discipline of endocrinology has been invaluable to our understanding of the estrous cycle. In the second half of the twentieth century the development of immunoassay technologies provided a rapid and sensitive method to quantify circulating concentrations of reproductive hormones and relate them to stage of the estrous cycle and physiological status of the animal. Ovarian ultrasonography provided the ability to track the growth and regression of ovarian structures within the same animal across the estrous cycle in real time and, in combination with hormonal profiling, accurately identify mechanisms regulating the estrous cycle and early pregnancy. Before this, the best technique had been serial collections with each animal being a single endpoint. The availability of continuous data such as daily hormone concentrations and daily follicular measurements within animals led to the improvement of methods to synchronize estrus in each of the species. Unfortunately, the use of radio-immunoassays has been declining for two decades. While enzyme-linked immunosorbent assays have been developed for many endocrine, paracrine, and autocrine factors, their primary market is human medicine and rodent models of human health, leaving those available for livestock species economically infeasible. Automated sensors such as accelerometers apply the knowledge attained through decades of endocrinology and ultrasonography studies to identify females in estrus and measure parameters of the estrous cycle that are related to fertility. The ability of automated sensors to centralize and assimilate large amounts of behavioral and physiological data from numerous animals will enhance targeted reproductive management in livestock production systems.
Collapse
Affiliation(s)
- Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - Shelby L Rosasco
- Department of Animal Science, University of Wyoming, Larmie, WY, USA
| | - Kacie L McCarthy
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
2
|
Cushman RA, Kaps M, Snider AP, Crouse MS, Woodbury BL, Keel BN, McCarthy KL. Relationship of length of the estrous cycle to antral follicle number in crossbred beef heifers. Transl Anim Sci 2024; 8:txae074. [PMID: 38800103 PMCID: PMC11127629 DOI: 10.1093/tas/txae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Length of the menstrual cycle was positively associated with antral follicle number in women. If this pattern is consistent in cattle, a value-added benefit to using automated activity monitors to determine estrous status could be the ability to predict antral follicle count (AFC). We, therefore, hypothesized that as inter-estrous interval increased ultrasonographic AFC would be greater in crossbred beef heifers. Over 3 yr, crossbred beef heifers (n = 1,394) were fitted with automated activity monitors for 81 d. From days 42 to 46, heifers were submitted for ultrasonographic examination to determine AFC. From days 60 to 81, heifers were visually observed twice daily for 45 min for signs of behavioral estrus. Heifers that had a behavioral estrus that coincided with a sensor-based estrus and had a previous sensor-based estrus between 15 and 26 d earlier were used for the analysis (n = 850). A combination of regression analyses and correlation analyses were applied to understand the association between data collected by sensors and follicle number determined by ultrasonographic examination. Antral follicle count was analyzed using the GLM procedure of SAS with estrous cycle length (15 to 26 d) as a fixed effect. Estrus was more likely to initiate in the early morning hours and peak activity was greater (P < 0.0001) when estrus initiated between 0200 and 0800 hours then when estrus initiated at other times of the day. Antral follicle count did not differ due to length of the estrous cycle (P = 0.87). Thus, length of the estrous cycle obtained from three-axis accelerometers cannot be used to predict follicle number in crossbred beef heifers; however, machine learning approaches that combine multiple features could be used to integrate parameters of activity with other relevant environmental and management data to quantify AFC and improve reproductive management in beef cows.
Collapse
Affiliation(s)
- Robert A Cushman
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Martim Kaps
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | | | - Matthew S Crouse
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Bryan L Woodbury
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Brittney N Keel
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Kacie L McCarthy
- Department of Animal Science, University of Nebraska at Lincoln, Lincoln, NE, USA
| |
Collapse
|
3
|
Hurlbert JL, Baumgaertner F, Menezes ACB, Bochantin KA, Diniz WJS, Underdahl SR, Dorsam ST, Kirsch JD, Sedivec KK, Dahlen CR. Supplementing vitamins and minerals to beef heifers during gestation: impacts on mineral status in the dam and offspring, and growth and physiological responses of female offspring from birth to puberty. J Anim Sci 2024; 102:skae002. [PMID: 38175528 PMCID: PMC10836515 DOI: 10.1093/jas/skae002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
We evaluated the effects of feeding a vitamin and mineral supplement to nulliparous beef heifers throughout gestation on the mineral status of the dam, calf, placenta, and colostrum; offspring growth performance; and physiological responses of offspring raised as replacement heifers. Angus-based heifers (n = 31, initial body weight [BW] = 412.5 ± 53.68 kg) were adapted to an individual feeding system for 14 d, estrus synchronized and bred with female-sexed semen. Heifers were ranked by BW and randomly assigned to receive either a basal diet (CON; n = 14) or the basal diet plus 113 g heifer-1 d-1 of the vitamin and mineral supplement (VTM; n = 17). Targeted BW gains for both treatments was 0.45 kg heifer-1 d-1. Liver biopsies were obtained from dams at breeding, days 84 and 180 of gestation. At calving, liver biopsies were taken from dams and calves; colostrum, placenta, and blood samples were collected; and calf body measurements were recorded. After calving, all cow-calf pairs received a common diet through weaning, and F1 heifer calves were managed similarly after weaning. Offspring growth performance, feeding behavior, blood metabolites, and hormones were evaluated from birth through 15 mo of age. Data were analyzed using the MIXED procedure in SAS with repeated measures where appropriate. Hepatic concentrations of Se decreased in VTM dams (P ≤ 0.05) from day 84 to calving, while concentrations of Cu decreased in VTM and CON (P ≤ 0.05) from day 84 to calving. Calf liver concentrations of Se, Cu, Zn, and Co at birth were greater for VTM than CON (P ≤ 0.05), but calf birth BW and body measurements were not different (P = 0.45). Placental Se, colostrum quantity, total Se, Cu, Zn, and Mn in colostrum were greater (P ≤ 0.04) in VTM dams than CON. Finally, offspring from VTM dams were heavier than CON (P < 0.0001) from weaning through 15 mo of age. These results were coupled with greater (P ≤ 0.04) blood glucose at birth, decreased (P ≤ 0.05) blood urea nitrogen at pasture turn out and weaning, and altered feeding behaviors in VTM offspring compared with CON. Maternal gestational vitamin and mineral supplementation enhanced mineral status in dams and F1 progeny, augmented postnatal offspring growth and blood metabolites. Consequently, in utero vitamin and mineral supplementation may exert programming outcomes on the performance and productivity of females raised as herd replacements and should be considered when developing diets for gestating cows and heifers.
Collapse
Affiliation(s)
- Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kerri A Bochantin
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Wellison J S Diniz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sarah R Underdahl
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
4
|
Webb EM, Holman DB, Schmidt KN, Pun B, Sedivec KK, Hurlbert JL, Bochantin KA, Ward AK, Dahlen CR, Amat S. Sequencing and culture-based characterization of the vaginal and uterine microbiota in beef cattle that became pregnant or remained open following artificial insemination. Microbiol Spectr 2023; 11:e0273223. [PMID: 37921486 PMCID: PMC10714821 DOI: 10.1128/spectrum.02732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Emerging evidence suggests that microbiome-targeted approaches may provide a novel opportunity to reduce the incidence of reproductive failures in cattle. To develop such microbiome-based strategies, one of the first logical steps is to identify reproductive microbiome features related to fertility and to isolate the fertility-associated microbial species for developing a future bacterial consortium that could be administered before breeding to enhance pregnancy outcomes. Here, we characterized the vaginal and uterine microbiota in beef cattle that became pregnant or remained open via artificial insemination and identified microbiota features associated with fertility. We compared similarities between vaginal and uterine microbiota and between heifers and cows. Using culturing, we provided new insights into the culturable fraction of the vaginal and uterine microbiota and their antimicrobial resistance. Overall, our findings will serve as an important basis for future research aimed at harnessing the vaginal and uterine microbiome for improved cattle fertility.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Beena Pun
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, North Dakota, USA
| | - Jennifer L. Hurlbert
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Kerri A. Bochantin
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Alison K. Ward
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Carl R. Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|