1
|
Goo D, Lee J, Paneru D, Sharma MK, Rafieian-Naeini HR, Mahdavi FS, Gyawali I, Gudidoddi SR, Han G, Kim WK. Effects of branched-chain amino acid imbalance and dietary valine and isoleucine supplementation in modified corn-soybean meal diets with corn distillers dried grains with solubles on growth performance, carcass quality, intestinal health, and cecal microbiome in Cobb 500. Poult Sci 2024; 103:104483. [PMID: 39510006 PMCID: PMC11577229 DOI: 10.1016/j.psj.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
One important feature of corn distillers dried grains with solubles (DDGS) is its high leucine:lysine ratio, which can inhibit chicken growth by causing branched-chain amino acid (BCAA) antagonism. The current study was conducted to investigate the effects of BCAA imbalance of inclusion of DDGS and whether additional dietary valine and isoleucine could alleviate the negative effects in broilers. A total of 640 0-d-old male Cobb 500 broilers were allocated into 4 treatments with 8 replicates and reared until d 42. The four different dietary groups were as follows: 1) control (CON) group (corn-soybean meal-based diet); 2) 30% DDGS (30D) group (replacing soybean meal with 30% DDGS); 3) 30D + additional valine and isoleucine (30DB) group; and 4) the group of 30DB + additional valine and isoleucine to provide the same leucine:valine and leucine:isoleucine ratios as the CON group (30DBB). The analyzed leucine:lysine ratios of the CON group were 1.36/1.41/1.46 (starter/grower/finisher phase), whereas the average leucine:lysine ratios of the 30% DDGS groups were 1.61/1.70/1.78 (starter/grower/finisher phase). The 30% DDGS groups (30D, 30DB, and 30DBB) negatively affected body weight (BW) from d 7 to 42 and BW gain (BWG), feed intake, carcass weight, breast muscle weight, and jejunal and ileal villus height:crypt depth during the overall period (d 0 to 42) (P < 0.05). Furthermore, the 30% DDGS groups significantly altered expression levels of jejunal tight junction proteins, breast muscle mechanistic target of rapamycin (mTOR) pathway-related genes, BCAA catabolism genes, and AA transporters compared to the CON (P < 0.01). The 30% DDGS groups showed differences in beta-diversity indices compared to the CON group (P < 0.05). The 30DBB group showing the lowest d 21 and 42 BW and overall BWG had the largest differences compared to the CON group in most measurements. In conclusion, excessive replacement of soybean meal with DDGS can significantly increase leucine levels, which may negatively affect chicken growth. Additionally, inappropriate ratios of valine and isoleucine can further decrease growth performance.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Fatemeh S Mahdavi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Gippeum Han
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.
| |
Collapse
|
2
|
Chae B, Poaty Ditengou JIC, Lee AL, Tak J, Cheon I, Choi NJ. An Estimation of the Requirements of the Standardized Ileal Digestible Tryptophan, Valine, Isoleucine and Methionine on Young Pigs' (Up to 50 kg) Feed Efficiency: A Meta-Regression Analysis. Animals (Basel) 2024; 14:2884. [PMID: 39409833 PMCID: PMC11482568 DOI: 10.3390/ani14192884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Currently, the NRC amino acid (AA) requirements for pigs published in 2012 are used as a reference in variable swine industries. However, recent results in several articles suggest that the standardized ileal digestible (SID) AA-lysine (Lys) ratio significantly evolved over the last two decades, while some publications report inconsistent outcomes. Therefore, the present study used a meta-regression analysis to assess the relative ratio to lysine to maximize the feed efficiency of four essential amino acids (tryptophan, valine, isoleucine, and methionine) in pig diets. According to the PRISMA guidelines, articles examining the target AA requirement using a basal diet supplemented with varying levels of crystalline AA (tryptophan, valine, isoleucine, or methionine) were identified across Scopus, PubMed, and Science Direct. As a result, 23, 22, 16, and 9 articles using tryptophan, valine, isoleucine, and methionine were selected and categorized into experiments for inclusion in our meta-analysis. The results suggested that the requirements of tryptophan, valine, isoleucine, and methionine in our meta-regression analysis were superior to NRC recommendations, regardless of the regression models and the growth phases with significant RSQ values (RSQ ≈ 1). Also, the QUAD and CLP regression models emphasized higher requirements than the LP model for the great majority of amino acids and growth phases. The results of the QUAD and CLP models were selected as estimations of the amino acid requirements for pigs under challenged conditions, whereas the LP model was chosen to estimate the amino acid requirements of genetically improved pigs under a modern housing system. The results of this meta-regression analysis could be used to refresh the information on the NRC amino acids (AA) requirements for swine.
Collapse
Affiliation(s)
- Byungho Chae
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| | | | - A-Leum Lee
- CJ Cheiljedang, Seoul 04560, Republic of Korea; (A.-L.L.); (J.T.)
| | - Jisoo Tak
- CJ Cheiljedang, Seoul 04560, Republic of Korea; (A.-L.L.); (J.T.)
| | - Inhyeok Cheon
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| |
Collapse
|
3
|
Mallea AP, Espinosa CD, Lee SA, Cristobal MA, Torrez-Mendoza LJ, Stein HH. Dietary supplementation of valine, isoleucine, and tryptophan may overcome the negative effects of excess leucine in diets for weanling pigs containing corn fermented protein. J Anim Sci Biotechnol 2024; 15:125. [PMID: 39252075 PMCID: PMC11385133 DOI: 10.1186/s40104-024-01082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diets with high inclusion of corn co-products such as corn fermented protein (CFP) may contain excess Leu, which has a negative impact on feed intake and growth performance of pigs due to increased catabolism of Val and Ile and reduced availability of Trp in the brain for serotonin synthesis. However, we hypothesized that the negative effect of using CFP in diets for weanling pigs may be overcome if diets are fortified with crystalline sources of Val, Trp, and (or) Ile. METHODS Three hundred and twenty weanling pigs were randomly allotted to one of 10 dietary treatments in a completely randomized design, with 4 pigs per pen and 8 replicate pens per treatment. A corn-soybean meal diet and 2 basal diets based on corn and 10% CFP or corn and 20% CFP were formulated. Seven additional diets were formulated by fortifying the basal diet with 20% CFP with Ile, Trp, Val, Ile and Val, Ile and Trp, Trp and Val, or Ile, Trp and Val. A two-phase feeding program was used, with d 1 to 14 being phase 1 and d 15 to 28 being phase 2. Fecal scores were recorded every other day. Blood samples were collected on d 14 and 28 from one pig per pen. On d 14, fecal samples were collected from one pig per pen in 3 of the 10 treatments to determine volatile fatty acids, ammonium concentration, and microbial protein. These pigs were also euthanized and ileal tissue was collected. RESULTS There were no effects of dietary treatments on any of the parameters evaluated in phase 1. Inclusion of 10% or 20% CFP in diets reduced (P < 0.05) final body weight on d 28, and average daily gain (ADG) and average daily feed intake (ADFI) in phase 2 and for the entire experimental period. However, pigs fed the CFP diet supplemented with Val, Ile, and Trp had final body weight, ADFI, ADG and gain to feed ratio in phase 2 and for the entire experiment that was not different from pigs fed the control diet. Fecal scores in phase 2 were reduced (P < 0.05) if CFP was used. CONCLUSIONS Corn fermented protein may be included by up to 20% in diets for weanling pigs without affecting growth performance, gut health, or hindgut fermentation, if diets are fortified with extra Val, Trp, and Ile. Inclusion of CFP also improved fecal consistency of pigs.
Collapse
Affiliation(s)
- Andrea P Mallea
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Charmaine D Espinosa
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
- Present Address: EnviroFlight, Raleigh, NC, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Minoy A Cristobal
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Garavito-Duarte YR, Levesque CL, Herrick K, Perez-Palencia JY. A corn-fermented protein ingredient can be included in early nursey diets without compromising pig growth performance and health status. Transl Anim Sci 2024; 8:txad149. [PMID: 38390272 PMCID: PMC10883705 DOI: 10.1093/tas/txad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
In nursery diets, ingredients with high protein content and highly digestible nutrients, such as corn-fermented protein product with added yeast mass (GDDY), can be included as an alternative to common protein sources. This study investigated the dietary inclusion of GDDY as an alternative protein source on growth performance and intestinal health of weaned pigs. A total of 594 weaned pigs (5.7 ± 0.9 kg; 18.5 days of age) were allotted to 36 pens in a randomized incomplete block design. Pens were assigned to one of 4 dietary treatments: CON: a common nursery feeding program; SBM75: CON diet replacing 75% of soybean meal (SBM) with GDDY; FM/ESBM: CON diet without fish meal (FM) and enzyme-treated SBM (ESBM) + GDDY; GDDY50: CON diet replacing 50% of SBM, FM, and ESBM with GDDY. Experimental diets were formulated to meet nutrient requirements of nursery pigs and provided in meal form through four phases during the nursery period. Pig growth performance was assessed on days 7, 14, 21, 28, 42, and 53. Pen fecal score was assessed daily from days 0 to 14, and 3 times per week from days 15 to 35. Intestinal health was assessed based on plasma immunoglobulin A (IgA) concentration and the differential sugar absorption test. The total tract digestibility of dry matter (DM), crude protein (CP), gross energy (GE), and phosphorus was also evaluated. From days 0 to 7 and days 7 to 14, dietary treatment had no effect (P > 0.05) on BW, ADG, and ADFI. For the rest of the experimental period, ADG and ADFI were greater (P < 0.05) in pigs fed CON in comparison with those fed SBM75 and GDDY50 and did not differ from pigs fed FM/ESBM. Pigs fed GDDY50 tended (P = 0.082) to have greater serum IgA concentration on day 20 when compared with SBM75 and FM/ESBM pigs. There were no differences among dietary treatments for DM, CP, and GE digestibility. Phosphorus digestibility was higher in FM/ESBM (P < 0.05) compared with SBM75 and GDDY50. These results supported the hypothesis that GDDY can be incorporated in nursery pig diets during the first couple weeks after weaning without affecting growth performance. However, in the late nursery period, inclusion levels starting at 14% can compromise performance.
Collapse
Affiliation(s)
- Yesid R Garavito-Duarte
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | | | | |
Collapse
|
5
|
Garavito-Duarte YR, Levesque CL, Herrick K, Perez-Palencia JY. Nutritional value of high protein ingredients fed to growing pigs in comparison to commonly used protein sources in swine diets. J Anim Sci 2023; 101:skad135. [PMID: 37119202 PMCID: PMC10195198 DOI: 10.1093/jas/skad135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Two experiments were conducted to test the hypothesis that two high protein dried distillers with solubles and yeast mass added (GDDY) products fed to growing pigs had comparable amino acid (AA) digestibility and metabolizable energy (ME) to feeds commonly used in swine diets. In experiment 1, seven barrows with an initial body weight (BW) of 25 ± 0.8 kg were fitted with a simple T-cannula at the distal ileum to allow for digesta collection. Experimental diets were N-free diets and six cornstarch-based diets containing six ingredients as the sole source of AA: spray dried GDDY, ring dried GDDY, corn distillers dried grains with solubles (DDGS), soybean meal (SBM), enzymatically treated soybean meal (ESBM), and fish meal (FM) provided at 4% of BW. The experiment was conducted as a 7 × 7 Latin square design with seven collection periods of 7 d (5 d adaptation and 2 d ileal digesta collection). In experiment 2, a total of 28 barrows (28.8 ± 1.4 kg BW) were used in a two-period switch-back design with seven diets and four replicate pigs in each period (n = 8 reps per diet). Experimental diets were a corn-based basal diet and six corn-based diets containing spray dried GDDY, ring dried GDDY, DDGS, SBM, ESBM, and FM. Fecal and urine samples were collected using the marker-to-marker approach for 5 d after 7 d of adaptation to determine ME concentration. Overall, standardized ileal digestibility (SID) values were within the mean ± SD of NRC (2012) values for all ingredients evaluated. The SID of AA was greater (P < 0.05) in ESBM than the other protein feedstuffs (90.09% vs. 78.71%-81.51%). There were no significant differences in SID of AA (P > 0.05) in SBM, FM, spray dried GDDY, and ring dried GDDY (81.49%, 78.71%, 81.52%, and 79.20%). With respect to the most common first limiting AA for swine, the SID of Lys was greater (P < 0.05) in spray dried GDDY than ring dried GDDY and DDGS (83.56% vs. 77.33% and 68.53%, respectively). There were no significant differences (P > 0.05) for ME in corn (3,313 kcal/kg), ESBM (3,323 kcal/kg), and FM (3,454 kcal/kg) when compared with spray dried GDDY and ring dried GDDY (3,995 and 3,442 kcal/kg respectively). However, spray dried GDDY had greater DE and ME when compared to SBM. Collectively, this study demonstrates that GDDY products have an AA profile and digestibility comparable to SBM; ME in GDDY products is not different from corn. Therefore, GDDY has the potential as a feed ingredient for pigs, which could provide an alternative source of protein and energy in swine diets.
Collapse
Affiliation(s)
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Kevin Herrick
- Technical Services Department, POET Nutrition, Sioux Falls, SD 57104, USA
| | | |
Collapse
|
6
|
Kwon WB, Soto JA, Stein HH. Effects of dietary leucine and tryptophan on serotonin metabolism and growth performance of growing pigs. J Anim Sci 2021; 100:6448144. [PMID: 34865076 DOI: 10.1093/jas/skab356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
An experiment was conducted to test the hypothesis that increased dietary Trp is needed in high-Leu diets for growing pigs to prevent a drop in plasma serotonin and hypothalamic serotonin concentrations and to maintain growth performance of animals. A total of 144 growing pigs (initial weight: 28.2 ± 1.9 kg) were assigned to 9 treatments in a randomized complete block design with 2 blocks, 2 pigs per pen, and 8 replicate pens per treatment. The 9 diets were formulated in a 3 × 3 factorial with 3 levels of dietary Leu (101, 200, or 299% standardized ileal digestible [SID] Leu:Lys), and 3 levels of dietary Trp (18, 23, or 28% SID Trp:Lys). A basal diet that met requirements for SID Leu and SID Trp was formulated and 8 additional diets were formulated by adding crystalline L-Leu and (or) L-Trp to the basal diet. Individual pig weights were recorded at the beginning of the experiment and at the conclusion of the 21-d experiment. On the last day of the experiment, one pig per pen was sacrificed, and blood and hypothalamus samples were collected to measure plasma urea N, plasma serotonin, and hypothalamic serotonin concentrations. Results indicated that increasing dietary Trp increased (P < 0.05) hypothalamic serotonin, whereas increases (P < 0.05) in average daily gain (ADG) and average daily feed intake (ADFI) were observed only in pigs fed diets containing excess Leu. Increasing dietary Leu reduced (P < 0.05) ADG, ADFI, and hypothalamic serotonin. However, the increase in ADG and ADFI caused by dietary Trp was greater if 299% SID Leu:Lys was provided than if 101% SID Leu:Lys was provided (interaction, P < 0.05). Plasma Leu concentration was positively affected by dietary Leu and negatively affected by dietary Trp, but the negative effect of Trp was greater if 299% SID Leu:Lys was provided than if 101% SID Leu:Lys was provided (interaction, P < 0.05). Plasma concentration of Trp was positively affected by increased dietary Trp and increased dietary Leu, but the increase in plasma concentration of Trp was greater if Leu level was at 101 % SID Leu:Lys ratio than at 299% SID Leu:Lys ratio (interaction, P < 0.05). In conclusion, increased dietary Leu reduced ADG, ADFI, and hypothalamic serotonin concentration, and influenced metabolism of several indispensable amino acids, but Trp supplementation partly overcame the negative effect of excess Leu. This demonstrates the importance of Trp in regulation of hypothalamic serotonin, and therefore, feed intake of pigs.
Collapse
Affiliation(s)
- Woong B Kwon
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Jose A Soto
- Ajinomoto Animal Nutrition North America Inc, Chicago, IL, 60631, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| |
Collapse
|
7
|
Yang Z, Palowski A, Jang JC, Urriola PE, Shurson GC. Determination, comparison, and prediction of digestible energy, metabolizable energy, and standardized ileal digestibility of amino acids in novel maize co-products and conventional distillers dried grains with solubles for swine. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Jang JC, Zeng Z, Urriola PE, Shurson GC. Effects of feeding corn distillers dried grains with solubles diets without or with supplemental enzymes on growth performance of pigs: a meta-analysis. Transl Anim Sci 2021; 5:txab029. [PMID: 34386710 PMCID: PMC8355451 DOI: 10.1093/tas/txab029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/10/2021] [Indexed: 11/12/2022] Open
Abstract
A meta-analysis was conducted to determine the effects of the dietary energy system (net energy or metabolizable energy), oil content of corn distillers dried grains with solubles (cDDGS), diet inclusion levels, and pig age on growth performance of pigs fed cDDGS-based diets. Mean differences of average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) were calculated and expressed as a percentage change relative to feeding corn-soybean meal (SBM)- and cDDGS-based diets to nursery [body weight (BW) < 25 kg] and growing-finishing (BW > 25 kg) pigs, and to compare the effects of supplementing various types of exogenous enzymes without or with phytase on growth performance. A total of 27 studies with 106 growth performance observations were included in the cDDGS dataset, and 34 studies with 84 observations for enzyme responses in cDDGS diets were used in the enzyme dataset. Approximately, 64.7% of the observations showed no change, and 26.7% of observations showed a reduction in ADG, ADFI, and G:F when feeding cDDGS-based diets to the nursery and growing-finishing pigs compared with feeding corn-SBM-based diets. Furthermore, feeding cDDGS diets resulted in decreased (P < 0.01) mean difference of ADG (-4.27%) and G:F (-1.99%) for nursery pigs, and decreased (P < 0.01) mean difference of ADG (-1.68%) and G:F (-1.06%) for growing-finishing pigs. Every percentage unit increase in the inclusion level of cDDGS in growing-finishing pig diet was associated with a decrease (P < 0.01) in ADG (-0.10%) and ADFI (-0.09%). Feeding high oil (≥10% ether extract) cDDGS-based diets to pigs resulted in a 2.96% reduction in ADFI whereas feeding reduced-oil (<10% ether extract) cDDGS-based diets reduced G:F by 1.56% compared with pigs fed corn-SBM-based diets. Supplementation of exogenous enzymes improved (P < 0.05) the mean difference of ADG and G:F by 1.94% and 2.65%, respectively, in corn-SBM-based diets, and by 2.67% and 1.87%, respectively, in cDDGS diets. Supplementation of exogenous protease, enzyme cocktail, or xylanase improved (P < 0.05) ADG by 7.29%, 2.64%, and 2.48% in pigs fed corn-SBM-based diets, respectively. There were no differences between the dietary addition of single enzymes and enzyme combinations for any growth performance parameters in corn-SBM- or cDDGS-based diets. In conclusion, feeding cDDGS-based diets slightly reduces the growth performance of nursery and growing-finishing pigs, but supplementation of xylanase or enzyme cocktail can improve G:F of pigs fed cDDGS-based diets.
Collapse
Affiliation(s)
- Jae-Cheol Jang
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhikai Zeng
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
9
|
Acosta JP, Espinosa CD, Jaworski NW, Stein HH. Corn protein has greater concentrations of digestible amino acids and energy than low-oil corn distillers dried grains with solubles when fed to pigs but does not affect the growth performance of weanling pigs. J Anim Sci 2021; 99:6287954. [PMID: 34049393 DOI: 10.1093/jas/skab175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023] Open
Abstract
Three experiments were conducted to test the hypothesis that standardized ileal digestibility (SID) of amino acids (AA) and digestible energy (DE) and metabolizable energy (ME) in a new source of corn protein are greater than in corn distillers dried grains with solubles (DDGS) and that corn protein may be included in diets for weanling pigs. In experiment 1, the SID of AA was determined in two sources of DDGS (DDGS-1 and DDGS-2) and in corn protein. Results indicated that SID of most AA was greater (P < 0.05) in DDGS-2 and corn protein than in DDGS-1, but corn protein contained more digestible AA than both sources of DDGS. In experiment 2, the DE and ME in corn, the two sources of DDGS, and corn protein were determined. Results demonstrated that DE (dry matter basis) in corn protein was greater (P < 0.05) than in corn, but ME (dry matter basis) was not different between corn and corn protein. However, DE and ME in corn (dry matter basis) were greater (P < 0.05) than in DDGS-1 and DDGS-2. In experiment 3, 160 weanling pigs were allotted to four treatments in phases 1 and 2 and a common diet in phase 3. Corn protein was included at 5% to 10% in phases 1 and 2 at the expense of plasma protein and enzyme-treated soybean meal. Results indicated that although differences in average daily gain and gain to feed ratio were observed in phase 1, no differences among treatments were observed for the overall experimental period. In conclusion, the concentration of digestible AA is greater in corn protein than in DDGS; DE and ME in corn protein are also greater than in DDGS; and up to 10% corn protein may be included in phase 1 and phase 2 diets for weanling pigs.
Collapse
Affiliation(s)
- Jessica P Acosta
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Neil W Jaworski
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.,Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Paula VRC, Milani NC, Azevedo CPF, Sedano AA, Souza LJ, Mike BP, Shurson GC, Ruiz US. Comparison of digestible and metabolizable energy and digestible phosphorus and amino acid content of corn ethanol coproducts from Brazil and the United States produced using fiber separation technology for swine. J Anim Sci 2021; 99:6242675. [PMID: 33880527 DOI: 10.1093/jas/skab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Three experiments (exp.) were conducted to determine and compare the digestibility of nutrients and energy of corn distillers dried grains with solubles (DDGS) from the United States (USDDGS), a dried mixture of corn bran with solubles (CBS) from Brazil (BRCBS), and high protein corn distillers dried grains (HP-DDG) from the United States (USHPDG) and Brazil (BRHPDG) in growing pigs. The feed ingredients were evaluated for apparent total tract digestibility (ATTD) of gross energy (GE), dry matter (DM), crude protein (CP), ether extract, neutral and acid detergent fiber (NDF and ADF, respectively), and digestible and metabolizable energy (DE and ME, respectively) using the total collection and index methods in exp. 1; ATTD and standardized total tract digestibility (STTD) of phosphorus (P) in exp. 2; and apparent (AID) and standardized (SID) ileal digestibilities of CP and amino acids (AA) in exp. 3. Fifty crossbred barrows (32.4 ± 6.9, 38.3 ± 5.2, and 46.2 ± 5.3 kg body weight [BW], in exp. 1, 2, and 3, respectively) were fed a corn basal diet in exp. 1, a P-free diet in exp. 2, and an N-free diet in exp. 3 or diets with 40% inclusion of test ingredients to provide 10 replications per treatment. Pigs were housed individually in metabolism cages (exp. 1) or in pens (exp. 2 and 3) and fed at 2.8 times the maintenance DE requirement (110 kcal/kg BW0.75) based on their BW at the beginning of each experiment. Except for ATTD of NDF, which tended (P = 0.058) to be greater by the index method compared with the total collection method, no difference between the total collection and index methods was observed for ATTD of remaining nutrients and DE. The ATTD of DM, GE, NDF, and DE content of BRHPDG were greater (P < 0.001) than USHPDG, BRCBS, and USDDGS. The AID of CP, Arg, His, Ile, Leu, Lys, Thr, and Val and the SID of His, Leu, Lys, and Val of BRHPDG were 8% to 36% greater (P < 0.05) than those from USHPDG. Except for Trp, all AID and SID AA values were greater (P < 0.05) in BRHPDG than in USHPDG. The ATTD of DM, GE, NDF, and ADF; DE and ME content; AID of CP, Arg, Ile, Leu, Phe, Thr, and Trp; and SID of CP, Arg, Phe, and Thr of USDDGS were 9% to 45% greater (P < 0.05) than those in BRCBS. The ATTD and the STTD of P in USHPDG and USDDGS were 26% to 42% greater (P < 0.05) compared with BRHPDG and BRCBS. In conclusion, BRHPDG had a greater digestibility of energy and most of the AA than USHPDG, while the BRCBS evaluated had lower nutritional value than the USDDGS source.
Collapse
Affiliation(s)
- Vinicius R C Paula
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Natália C Milani
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Cândida P F Azevedo
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Anderson A Sedano
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Leury J Souza
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Brian P Mike
- FS Bioenergia, Lucas do Rio Verde, MT 78455-000, Brazil
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108-6012, USA
| | - Urbano S Ruiz
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| |
Collapse
|
11
|
Palowski A, Yang Z, Jang J, Dado T, Urriola PE, Shurson GC. Determination of in vitro dry matter, protein, and fiber digestibility and fermentability of novel corn coproducts for swine and ruminants. Transl Anim Sci 2021; 5:txab055. [PMID: 34041447 PMCID: PMC8140363 DOI: 10.1093/tas/txab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
New processes are being used in some dry-grind ethanol plants in the United States and Brazil to improve ethanol yield and efficiency of production while also providing nutritionally enhanced corn coproducts compared with conventional corn distillers dried grains with solubles (DDGS). The objectives of this study were to determine the chemical composition and in vitro digestibility of 5 conventional corn DDGS sources and 10 emerging novel corn coproducts for swine and ruminants, and compare coproducts produced using similar processes in the United States and Brazil. Chemical composition, on a dry matter (DM) basis, among the 15 coproducts ranged from 18.5% to 54.7% for crude protein (CP), 12.3% to 51.4% for neutral detergent fiber (NDF), 1.6% to 8.6% for acid detergent fiber, 4.7% to 12.3% for ether extract, and 1.6% to 8.6% for ash. For swine, in vitro hydrolysis of DM and CP were greater (P < 0.01) for the three U.S. corn DDGS sources compared with the two Brazilian corn DDGS sources, but in vitro fermentability of DM was comparable (P > 0.05) among all sources except one U.S. DDGS source that had less fermentable DM. High-protein and yeast dried distillers grains (Ultramax, UM; StillPro, SP) coproducts also had comparable (P > 0.05) DM fermentability for swine, but UM coproducts had greater (P < 0.01) DM and CP hydrolysis compared with SP. High-protein distillers dried grains (HP-DDG) from Brazil had greater (P < 0.01) DM and CP hydrolysis, but less (P < 0.01) DM fermentability for swine than HP-DDG produced in the United States, using the same process. For ruminants, total DM digestibility was greater (P < 0.01) in conventional DDGS sources from the United States compared with the two DDGS sources from Brazil. Total protein digestibility for ruminants was comparable and above 81% for all coproducts except for a DDGS source from Brazil, a HP-DDG source from the United States, and a UM sample. Interestingly, the corn fiber + solubles coproduct had not only relatively high digestibility of NDF (67.9%), DM (91.6%), and total CP (81.9%) for ruminants, but it also had relatively high total tract digestibility of DM (86.2%) and CP (69.9%) for swine. These results suggest that nutrient digestibility of conventional DDGS sources produced in the United States appear to be greater than corn Brazilian DDGS sources, but new process technologies being implemented in ethanol and coproduct production in both countries can enhance the nutritional value of corn coproducts for both swine and ruminants.
Collapse
Affiliation(s)
- A Palowski
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108
| | - Z Yang
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108
| | - J Jang
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108
| | - T Dado
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108
| | - P E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108
| | - G C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
12
|
Rao ZX, Goodband RD, Tokach MD, Dritz SS, Woodworth JC, DeRouchey JM, Calderone HI, Wilken MF. Evaluation of high-protein distillers dried grains on growth performance and carcass characteristics of growing-finishing pigs. Transl Anim Sci 2021; 5:txab038. [PMID: 34041442 DOI: 10.1093/tas/txab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
A total of 1,890 growing-finishing pigs (PIC; 359 × 1,050; initially 27.1 kg) were used in a 124-d growth trial to compare the effects of high-protein distillers dried grains (HPDDG; 39% crude protein [CP]) or conventional distillers dried grains with solubles (DDGS; 29% CP) on growth performance and carcass characteristics. Treatments were arranged in a 2 × 2 + 1 factorial with main effects of distillers dried grains source (conventional DDGS or HPDDG) and level (15% or 30%). A corn-soybean meal-based diet served as the control and allowed linear and quadratic level effects to be determined within each distillers dried grains (DDG) source. All diets were formulated on an equal standardized ileal digestible (SID) Lys-basis with diets containing HPDDG having less soybean meal than diets with conventional DDGS. Pens were assigned to treatments in a randomized complete block design with initial weight as the blocking factor. There were 27 pigs per pen and 14 pens per treatment. Overall, increasing conventional DDGS decreased (linear, P < 0.04) final body weight (BW), whereas increasing HPDDG tended to decrease (linear, P = 0.065) final BW. The decreased final BW was a result of decreased (linear, P < 0.01) ADG in the grower phase of the study as either DDG source increased. However, there were no differences observed in the finisher phase or overall ADG between pigs fed either DDG source or either inclusion level. Pigs fed HPDDG had decreased (P < 0.001) ADFI and increased (P < 0.001) G:F compared with those fed conventional DDGS. For carcass traits, increasing either conventional DDGS or HPDDG decreased carcass yield and HCW (linear, P < 0.02); however, there were no differences between pigs fed HPDDG or conventional DDGS. Iodine value (IV) increased (linear, P < 0.02) with increasing DDG and was greater (P < 0.001) in pigs fed HPDDG than conventional DDGS. In summary, pigs fed HPDDG had no evidence of difference in overall ADG compared to pigs fed conventional DDGS, but had greater overall G:F. Carcass fat IV was also greater in pigs fed HPDDG compared with pigs fed conventional DDGS. These differences were probably due to the difference in oil content.
Collapse
Affiliation(s)
- Zhong-Xing Rao
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Hilda I Calderone
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0201, USA
| | | |
Collapse
|
13
|
Cemin HS, Tokach MD, Dritz SS, Woodworth JC, DeRouchey JM, Goodband RD, Wilken MF. Effects of high-protein distillers dried grains on growth performance of nursery pigs. Transl Anim Sci 2021; 5:txab028. [PMID: 33748688 PMCID: PMC7963032 DOI: 10.1093/tas/txab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/09/2021] [Indexed: 11/27/2022] Open
Abstract
A total of 300 pigs (DNA 400 × 200, Columbus, NE), initially 11.1 kg, were used in a study to evaluate the effects of increasing amounts of high-protein distillers dried grains (HP DDG) on growth performance and to estimate its energy value relative to corn. Pigs were weaned, placed in pens with five pigs each, and fed a common diet for 21 d after weaning. Then, pens were assigned to treatments in a randomized complete block design. There were 5 treatments with 12 replicates per treatment. Treatments consisted of 0, 10, 20, 30, or 40% HP DDG, formulated by changing only the amounts of corn and feed-grade amino acids. Pigs were weighed weekly for 21 d to evaluate average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). Caloric efficiency was obtained by multiplying ADFI by kcal of net energy (NE) per kg of diet and dividing by ADG. The NE values for corn and soybean meal were obtained from NRC (2012), and initial estimates for HP DDG NE were derived from the Noblet et al. (1994) equation. The energy of HP DDG was estimated based on caloric efficiency relative to the diet without HP DDG. Pigs fed diets with increasing HP DDG had a linear decrease (P < 0.01) in ADG, ADFI, and final body weight. There was a tendency for a quadratic response (P = 0.051) in G:F, with the greatest G:F observed for pigs fed diets with 40% HP DDG. There was a linear reduction (P < 0.05) in caloric efficiency with increasing amounts of HP DDG, indicating the initial NE estimate of HP DDG was underestimated. The use of caloric efficiency to estimate the energy value of HP DDG presents several limitations. This approach assumes that the NE values of corn and soybean meal are accurate and does not take into account possible changes in body composition, which can influence the G:F response as leaner pigs are more efficient. In conclusion, increasing HP DDG in the diet linearly decreased ADG and ADFI. Using caloric efficiency to estimate energy content relative to corn, the HP DDG used in this study was estimated to be 97.3% of the energy value of corn. Direct or indirect calorimetry is needed to confirm this value.
Collapse
Affiliation(s)
- Henrique S Cemin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
14
|
Cristobal M, Acosta JP, Lee SA, Stein HH. A new source of high-protein distillers dried grains with solubles (DDGS) has greater digestibility of amino acids and energy, but less digestibility of phosphorus, than de-oiled DDGS when fed to growing pigs. J Anim Sci 2020; 98:5860471. [PMID: 32564063 DOI: 10.1093/jas/skaa200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
AbstractThree experiments were conducted to test the hypothesis that standardized ileal digestibility (SID) of amino acids (AA), concentration of metabolizable (ME), and standardized total tract digestibility (STTD) of P in a new source of distillers dried grains with solubles (DDGS; ProCap DDGS) are greater than in conventional de-oiled DDGS. In experiment 1, nine barrows (initial BW: 67.2 ± 6.4 kg) with a T-cannula in the distal ileum were allotted to a triplicated 3 × 3 Latin square design with three diets and three periods for a total of nine replicate pigs per diet. Two diets included ProCap DDGS or de-oiled DDGS as the sole source of crude protein (CP) and AA. An N-free diet was used to determine the basal endogenous losses of CP and AA. Ileal digesta were collected on days 5 and 6 of each period after 4 d of adaptation to diets. Results from experiment 1 indicated that ProCap DDGS contained more CP and AA compared with de-oiled DDGS. The SID of all AA in ProCap DDGS was greater (P < 0.001) compared with de-oiled DDGS with the exception that the SID of Pro was not different between the two sources of DDGS. In experiment 2, 24 growing barrows (initial BW: 32.7 ± 3.1 kg) were housed individually in metabolism crates and used in a randomized complete block design and fed a corn-based diet or two diets containing corn and each source of DDGS with eight replicate pigs per diet. Fecal and urine samples were collected for 4 d after 7 d of adaptation. Results from experiment 2 indicated that concentration of ME in ProCap DDGS was greater (P < 0.05) compared with corn or de-oiled DDGS. In experiment 3, 32 growing barrows (initial BW: 20.2 ± 0.9 kg) were placed in metabolism crates and allotted to four diets with eight pigs per diet using a 2 × 2 factorial treatment arrangement. The de-oiled DDGS and ProCap DDGS were both included in a diet without microbial phytase and a diet with microbial phytase (500 units/kg diet). Pigs were adapted to the diets for 5 d and fecal samples were collected for 4 d. Results from experiment 3 indicated that inclusion of phytase in the diet containing ProCap DDGS increased (P < 0.05) the STTD of P, but addition of phytase to the de-oiled DDGS diet did not increase STTD of P (interaction, P < 0.001), but the STTD of P was greater (P < 0.05) in de-oiled DDGS compared with ProCap DDGS. In conclusion, ProCap DDGS has greater SID of AA and contains more ME, but has reduced STTD of P compared with conventional de-oiled DDGS.
Collapse
Affiliation(s)
- Minoy Cristobal
- Department of Animal Sciences, University of Illinois, Urbana
| | | | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana
| |
Collapse
|
15
|
Yang Z, Urriola PE, Hilbrands A, Johnston LJ, Shurson GC. Effects of feeding high-protein corn distillers dried grains and a mycotoxin mitigation additive on growth performance, carcass characteristics, and pork fat quality of growing-finishing pigs. Transl Anim Sci 2020; 4:txaa051. [PMID: 32705047 PMCID: PMC7264687 DOI: 10.1093/tas/txaa051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 11/14/2022] Open
Abstract
Two experiments investigated the effects of feeding diets containing 30% of novel high-protein distillers dried grains (HP-DDG) sources to growing–finishing pigs on growth performance, carcass characteristics, and pork fat quality. A four-phase feeding program was used in both experiments, and diets within phases were formulated based on National Research Council (NRC; 2012) recommendations for metabolizable energy and standardized ileal digestible amino acid content of HP-DDG. In Exp. 1, a total of 144 pigs (body weight [BW] = 20.3 ± 1.6 kg) were fed either corn-soybean meal control diets (CON) or 30% HP-DDG diets (HP-DDG) containing 0.7 mg/kg deoxynivalenol (DON), 0.1 mg/kg fumonisins (FUM), and 56 μg/kg zearalenone (ZEA) for 8 wk. On week 9, a mycotoxin mitigation additive (MA) was added to CON and HP-DDG diets, resulting in a 2 × 2 factorial arrangement of treatments consisting of: CON, CON + MA, HP-DDG, and HP-DDG + MA. Pigs fed HP-DDG had lower (P < 0.01) average daily gain (ADG) and average daily feed intake (ADFI) compared with those fed CON during the first 8 wk. After MA was added to diets, pigs fed HP-DDG diets without MA had lower (P < 0.05) overall ADG than those fed HP-DDG + MA and less (P < 0.05) final BW than pigs fed CON or CON + MA. Adding MA to HP-DDG diets containing relatively low concentrations of mycotoxins was effective in restoring growth performance comparable to feeding CON. In Exp. 2, a different source of HP-DDG was used, and mycotoxin MAs were added to all diets at the beginning of the trial. A total of 144 pigs (BW = 22.7 ± 2.3 kg) were fed either a corn-soybean meal control diet or a 30% HP-DDG diet containing 0.5 mg/kg DON and 0.8 mg/kg FUM for 16 wk. Pigs fed HP-DDG diets had less (P < 0.01) final BW and ADG than pigs fed CON, but there were no differences in ADFI. Feeding the HP-DDG diets reduced (P < 0.01) hot carcass weight, carcass yield, longissimus muscle area (LMA), and percentage of carcass fat-free lean compared with pigs fed CON but did not affect backfat (BF) depth. Pigs fed HP-DDG had less (P < 0.01) saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) content and greater (P < 0.01) polyunsaturated fatty acid (PUFA) and iodine value in BF than pigs fed CON. These results suggest that feeding diets containing relatively low concentrations of co-occurring mycotoxins can be detrimental to growth performance, and the addition of MA alleviated the growth reduction. Feeding 30% HP-DDG reduced BW, ADG, carcass yield, LMA, and percentage of fat-free lean of growing–finishing pigs but yielded acceptable pork fat quality.
Collapse
Affiliation(s)
- Zhaohui Yang
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - Adrienne Hilbrands
- West Central Research and Outreach Center, University of Minnesota, Morris, MN
| | - Lee J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris, MN
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN
| |
Collapse
|