1
|
Boston TE, Wang F, Lin X, Kim SW, Fellner V, Scott MF, Ziegler AL, Van Landeghem L, Blikslager AT, Odle J. Prebiotic galactooligosaccharide improves piglet growth performance and intestinal health associated with alterations of the hindgut microbiota during the peri-weaning period. J Anim Sci Biotechnol 2024; 15:88. [PMID: 38867260 PMCID: PMC11170840 DOI: 10.1186/s40104-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Weaning stress reduces growth performance and health of young pigs due in part to an abrupt change in diets from highly digestible milk to fibrous plant-based feedstuffs. This study investigated whether dietary galactooligosaccharide (GOS), supplemented both pre- and post-weaning, could improve growth performance and intestinal health via alterations in the hindgut microbial community. METHODS Using a 3 × 2 factorial design, during farrowing 288 piglets from 24 litters received either no creep feed (FC), creep without GOS (FG-) or creep with 5% GOS (FG+) followed by a phase 1 nursery diet without (NG-) or with 3.8% GOS (NG+). Pigs were sampled pre- (D22) and post-weaning (D31) to assess intestinal measures. RESULTS Creep fed pigs grew 19% faster than controls (P < 0.01) prior to weaning, and by the end of the nursery phase (D58), pigs fed GOS pre-farrowing (FG+) were 1.85 kg heavier than controls (P < 0.05). Furthermore, pigs fed GOS in phase 1 of the nursery grew 34% faster (P < 0.04), with greater feed intake and efficiency. Cecal microbial communities clustered distinctly in pre- vs. post-weaned pigs, based on principal coordinate analysis (P < 0.01). No effects of GOS were detected pre-weaning, but gruel creep feeding increased Chao1 α-diversity and altered several genera in the cecal microbiota (P < 0.05). Post-weaning, GOS supplementation increased some genera such as Fusicatenibacter and Collinsella, whereas others decreased such as Campylobacter and Frisingicoccus (P < 0.05). Changes were accompanied by higher molar proportions of butyrate in the cecum of GOS-fed pigs (P < 0.05). CONCLUSIONS Gruel creep feeding effectively improves suckling pig growth regardless of GOS treatment. When supplemented post-weaning, prebiotic GOS improves piglet growth performance associated with changes in hindgut microbial composition.
Collapse
Affiliation(s)
- Timothy E Boston
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Feng Wang
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xi Lin
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vivek Fellner
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mark F Scott
- Milk Specialties Global, Eden Prairie, MN, 55344, USA
| | - Amanda L Ziegler
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anthony T Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Bhola J, Bhadekar R. Prebiotic effect of daily dietary polyphenols and oligosaccharides on lactobacillus species. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2024; 31:100407. [DOI: 10.1016/j.bcdf.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Lee HJ, Choi BG, Joo YH, Baeg CH, Kim JY, Kim DH, Lee SS, Kim SC. The Effects of Microbial Additive Supplementation on Growth Performance, Blood Metabolites, Fecal Microflora, and Carcass Characteristics of Growing-Finishing Pigs. Animals (Basel) 2024; 14:1268. [PMID: 38731272 PMCID: PMC11083169 DOI: 10.3390/ani14091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to assess the effects of microbial additives that produce antimicrobial and digestive enzymes on the growth performance, blood metabolites, fecal microflora, and carcass characteristics of growing-finishing pigs. A total of 180 growing-finishing pigs (Landrace × Yorkshire × Duroc; mixed sex; 14 weeks of age; 58.0 ± 1.00 kg) were then assigned to one of three groups with three repetitions (20 pigs) per treatment for 60 days of adaptation and 7 days of collection. Dietary treatments included 0, 0.5, and 1.0% microbial additives in the basal diet. For growth performance, no significant differences in the initial and final weights were observed among the dietary microbial additive treatments, except for the average daily feed intake, average daily gain, and feed efficiency. In terms of blood metabolites and fecal microflora, immunoglobulin G (IgG), blood urea nitrogen, blood glucose, and fecal lactic acid bacteria count increased linearly, and fecal E. coli counts decreased linearly with increasing levels of microbial additives but not growth hormones and Salmonella. Carcass quality grade was improved by the microbial additive. In addition, carcass characteristics were not influenced by dietary microbial additives. In conclusion, dietary supplementation with 1.0% microbial additive improved average daily gain, feed efficiency, IgG content, and fecal microflora in growing-finishing pigs.
Collapse
Affiliation(s)
- Hyuk-Jun Lee
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Bu-Gil Choi
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Young-Ho Joo
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Chang-Hyun Baeg
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Ji-Yoon Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Dong-Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Seong-Shin Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55356, Republic of Korea;
| | - Sam-Churl Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| |
Collapse
|
4
|
Zacharis C, Bonos E, Giannenas I, Skoufos I, Tzora A, Voidarou CC, Tsinas A, Fotou K, Papadopoulos G, Mitsagga C, Athanassiou C, Antonopoulou E, Grigoriadou K. Utilization of Tenebrio molitor Larvae Reared with Different Substrates as Feed Ingredients in Growing Pigs. Vet Sci 2023; 10:393. [PMID: 37368779 DOI: 10.3390/vetsci10060393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The procurement of adequate feed resources is one of the most important challenges for the animal industry worldwide. While the need for feeds rich in protein is constantly increasing, their production cannot readily keep up. Consequently, to overcome this challenge in a sustainable way, it is necessary to identify and develop new feeding strategies and feed ingredients, such as insect meals. In the present study, Tenebrio molitor larvae that were reared on two different substrates (standard and enriched with medicinal aromatic plant material) were used as feed ingredients for growing pigs. A total of 36 weaned pigs (34 days old) were randomly allocated to three treatment groups and fed either the control diet (A) or diets supplemented at 10% with one of the two insect meals (B and C). At the end of the trial (42 days), blood, feces, and meat samples were collected for analysis. The insect meal supplementation did not affect (p > 0.05) overall performance but significantly modified (p < 0.001) the fecal microflora balance and the blood cholesterol (p < 0.001), while the rest of the blood parameters tested were not affected. Moreover, this dietary supplementation significantly affected some microbial populations (p < 0.001), improved the total phenolic content (p < 0.05), and the fatty acid profile (p < 0.001) of the meat cuts, but did not affect (p > 0.05) meat color or proximate composition. Further research is needed to evaluate the different types and levels of inclusion of insect meals in pig nutrition.
Collapse
Affiliation(s)
- Christos Zacharis
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Skoufos
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | | | - Anastasios Tsinas
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Konstantina Fotou
- Department of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Georgios Papadopoulos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Mitsagga
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece
| | - Christos Athanassiou
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Nea Ionia, Greece
| | - Efthimia Antonopoulou
- Department of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization ELGO-DIMITRA, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Since January 2006 when using antibiotics as growth promoters in animal feed have been banned scientists are looking for the best resolution to apply alternative substances. Extensive research into the health-promoting properties of probiotics and prebiotics has led to significant interest in the mechanisms of action of the combined administration of these feed additives as a synbiotic. Subsequent research has led to the development of new products. Among the most important health benefits of additives are, inhibiting the growth of pathogenic bacteria in the GI tract, maintenance of homeostasis, treatment of inflammatory bowel diseases, and increase in immunity. Specific immunomodulatory mechanisms of action are not well understood and the effect is not always positive, though there are no reports of adverse effects of these substances found in the literature. For this reason, research is still being conducted on their proper application. However, due to the difficulties of carrying out research on humans, evidence of the beneficial effect of these additives comes mainly from experiments on animals. The objective of the present work was to assess the effect of probiotics, prebiotics, and synbiotics, as well as new additives including postbiotics, proteobiotics, nutribiotics, and pharmabiotics, on specific immunomodulatory mechanisms of action, increase in immunity, the reduction of a broad spectrum of diseases.
Collapse
|
6
|
Juhász Á, Molnár-Nagy V, Bata Z, Tso KH, Mayer Z, Posta K. Alternative to ZnO to establish balanced intestinal microbiota for weaning piglets. PLoS One 2022; 17:e0265573. [PMID: 35298549 PMCID: PMC8929640 DOI: 10.1371/journal.pone.0265573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
A wide range of phytobiotic feed additives are available on the market claiming to have beneficial effects on the growth of the host animal and to promote the development of a balanced microflora. The present study investigated the effects of the phytobiotic-prebiotic mixture of curcumin, wheat germ, and chicory on the growth performance and on the intestinal microflora composition of weaning piglets. Post weaning diarrhea causes significant losses for the producers, most commonly it is prevented by feeding high doses of zinc oxide (ZnO). The effect of a phytobiotic-prebiotic feed additive (1 kg T-1) was compared to a positive control (3.1 kg T-1 ZnO) and to a negative control (no feed supplement) in an in vivo animal trial. There was no significant difference in the final body weight and average daily gain of the trial and positive control groups, and both groups showed significantly (P<0.05) better results than the negative control. The feed conversion ratio of the phytobiotic-prebiotic supplemented group was significantly improved (P<0.05) compared to both controls. Both phytobiotic-prebiotic mixture and ZnO were able to significantly reduce (P<0.05) the amount of coliforms after weaning, even though ZnO reduced the amount of coliforms more efficiently than the trial feed additive, it also reduced the amount of potentially beneficial bacteria. Metagenomic data also corroborated the above conclusion. In the trial and positive control groups, the relative abundance of Enterobacteriaceae decreased by 85 and 88% between 3 weeks and 6 weeks of age, while in the negative control group a slight increase occurred. Lactobacillaceae were more abundant in the trial group (29.98%) than in the positive (8.67%) or in the negative (22.45%) control groups at 6 weeks of age. In summary, this study demonstrated that a phytobiotic-prebiotic feed additive may be a real alternative to ZnO for the prevention of post weaning diarrhea and promote the development of a balanced gut system.
Collapse
Affiliation(s)
- Ákos Juhász
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- * E-mail:
| | | | | | - Ko-Hua Tso
- Dr. Bata Ltd, Ócsa, Hungary
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Zoltán Mayer
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
7
|
Zeilinger K, Hellmich J, Zentek J, Vahjen W. Novel ex vivo screening assay to preselect farm specific pre- and probiotics in pigs. Benef Microbes 2021; 12:567-581. [PMID: 34420495 DOI: 10.3920/bm2020.0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel rapid ex vivo assay was developed as part of a concept to determine potential tailor-made combinations of pre- and probiotics for individual farms. Sow faecal slurries from 20 German pig farms were anaerobically incubated with pre- and probiotics or their combinations together with pathogenic strains that are of interest in pig production. Aliquots of these slurries were then incubated with media containing antibiotic mixtures allowing only growth of the specific pathogen. Growth was monitored and lag time was used to determine the residual fitness of the pathogenic strains. The background growth could be inhibited for an Escherichia coli- and a Clostridium difficile- but not for a Clostridium perfringens strain. The prebiotic fructo-oligosaccharides (FOS) and its combination with probiotics reduced the residual fitness of the E. coli strain in some farms. However, notable exceptions occurred in other farms where FOS increased the fitness of the E. coli strain. Generally, combinations of pre- and probiotics did not show additive effects on fitness for E. coli but displayed farm dependent differences. The effects of pre- and probiotics on the residual fitness of the C. difficile strain were less pronounced, but distinct differences between single application of prebiotics and their combination with probiotics were observed. It was concluded that the initial composition of the microbiota in the samples was more determinative for incubations with the C. difficile strain than for incubations with the E. coli strain, as the presumed fermentation of prebiotic products showed less influence on the fitness of the C. difficile strain. Farm dependent differences were pronounced for both pathogenic strains and therefore, this novel screening method offers a promising approach for pre-selecting pre- and probiotics for individual farms. However, evaluation of farm metadata (husbandry, feed, management) will be crucial in future studies to determine a tailor-made solution for combinations of pre- and probiotics for individual farms. Also, refinement of the ex vivo assay in terms of on-farm processing of samples and validation of unambiguous growth for pathogenic strains from individual farms should be addressed.
Collapse
Affiliation(s)
- K Zeilinger
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Hellmich
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
8
|
Sirichokchatchawan W, Apiwatsiri P, Pupa P, Saenkankam I, Khine NO, Lekagul A, Lugsomya K, Hampson DJ, Prapasarakul N. Reducing the Risk of Transmission of Critical Antimicrobial Resistance Determinants From Contaminated Pork Products to Humans in South-East Asia. Front Microbiol 2021; 12:689015. [PMID: 34385984 PMCID: PMC8353453 DOI: 10.3389/fmicb.2021.689015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical challenge worldwide as it impacts public health, especially via contamination in the food chain and in healthcare-associated infections. In relation to farming, the systems used, waste management on farms, and the production line process are all determinants reflecting the risk of AMR emergence and rate of contamination of foodstuffs. This review focuses on South East Asia (SEA), which contains diverse regions covering 11 countries, each having different levels of development, customs, laws, and regulations. Routinely, here as elsewhere antimicrobials are still used for three indications: therapy, prevention, and growth promotion, and these are the fundamental drivers of AMR development and persistence. The accuracy of detection of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) depends on the laboratory standards applicable in the various institutes and countries, and this affects the consistency of regional data. Enterobacteriaceae such as Escherichia coli and Klebsiella pneumoniae are the standard proxy species used for indicating AMR-associated nosocomial infections and healthcare-associated infections. Pig feces and wastewater have been suspected as one of the hotspots for spread and circulation of ARB and ARG. As part of AMR surveillance in a One Health approach, clonal typing is used to identify bacterial clonal transmission from the production process to consumers and patients - although to date there have been few published definitive studies about this in SEA. Various alternatives to antibiotics are available to reduce antibiotic use on farms. Certain of these alternatives together with improved disease prevention methods are essential tools to reduce antimicrobial usage in swine farms and to support global policy. This review highlights evidence for potential transfer of resistant bacteria from food animals to humans, and awareness and understanding of AMR through a description of the occurrence of AMR in pig farm food chains under SEA management systems. The latter includes a description of standard pig farming practices, detection of AMR and clonal analysis of bacteria, and AMR in the food chain and associated environments. Finally, the possibility of using alternatives to antibiotics and improving policies for future strategies in combating AMR in a SEA context are outlined.
Collapse
Affiliation(s)
- Wandee Sirichokchatchawan
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Diagnosis and Monitoring of Animal Pathogen Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Imporn Saenkankam
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Angkana Lekagul
- International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Kittitat Lugsomya
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Diagnosis and Monitoring of Animal Pathogen Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Factors affecting performance of pigs exposed to different challenge models. J Anim Sci 2021; 99:skab078. [PMID: 34061958 PMCID: PMC8168681 DOI: 10.1093/jas/skab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/14/2022] Open
|
10
|
Singh M, Kumar S, Banakar PS, Vinay VV, Das A, Tyagi N, Tyagi AK. Synbiotic formulation of Cichorium intybus root powder with Lactobacillus acidophilus NCDC15 and Lactobacillus reuteri BFE7 improves growth performance in Murrah buffalo calves via altering selective gut health indices. Trop Anim Health Prod 2021; 53:291. [PMID: 33909188 DOI: 10.1007/s11250-021-02733-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
The objective of this study was to evaluate the effects of synbiotic formulation of Cichorium intybus root powder (C) with Lactobacillus acidophilus NCDC15 (LA) and Lactobacillus reuteri BFE7 (LR) on growth performance in Murrah buffalo calves via monitoring selective gut health indices. Twenty-four Murrah buffalo calves of 5-7 days old and 33 ± 2.0 kg of body weight were distributed randomly into three groups adopting complete randomized design (CRD) as follows: (1) group I served as control (CON) provided with a basal diet alone; (2) group II supplemented with synbiotic formulation of 200 mL L. acidophilus NCDC15 fermented milk with 8 g of Cichorium intybus root powder (LAC) along with basal diet; (3) group III supplemented with synbiotic formulation of 200 mL L. reuteri BFE7 fermented milk with 8 g of Cichorium intybus root powder (LRC) along with basal diet. The final body weight (BW), average dry matter intake (DMI) and structural body measurements were significantly increased (P < 0.05) in LAC and LRC groups by synbiotic as compared to the CON. No effect was registered on apparent nutrient digestibility coefficient of various nutrients in supplemented groups. Faecal score was reduced by the supplementation of synbiotic being lowest in LRC followed by LAC and CON. Calves supplemented synbiotic showed lower (P < 0.05) faecal pH and ammonia with a concomitant increase in faecal lactate levels and faecal short chain fatty acids (SCFA) as compared to control. The faecal Lactobacillus and Bifidobacterium population was increased (P < 0.05) in synbiotic fed groups as compared to control. Additionally, coliform and clostridia count was decreased (P < 0.05) in treatment groups compared to CON. Overall, it may be concluded that synbiotic supplementation was effective in improving the growth performance in Murrah buffalo calves via altering selective gut health indices.
Collapse
Affiliation(s)
- Manpreet Singh
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachin Kumar
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - P S Banakar
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - V V Vinay
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Asit Das
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nitin Tyagi
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - A K Tyagi
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Animal Nutrition and Physiology, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|