1
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal Maldevelopment in the R6/2 Mouse Model of Juvenile Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618500. [PMID: 39464124 PMCID: PMC11507867 DOI: 10.1101/2024.10.15.618500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABA A receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
|
2
|
Vasilkovska T, Verschuuren M, Pustina D, van den Berg M, Van Audekerke J, Pintelon I, Cachope R, De Vos WH, Van der Linden A, Adhikari MH, Verhoye M. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington's disease mouse model. Clin Transl Med 2024; 14:e70055. [PMID: 39422700 PMCID: PMC11488302 DOI: 10.1002/ctm2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is marked by irreversible loss of neuronal function for which currently no availability for disease-modifying treatment exists. Advances in the understanding of disease progression can aid biomarker development, which in turn can accelerate therapeutic discovery. METHODS We characterised the progression of altered dynamics of whole-brain network states in the zQ175DN mouse model of HD using a dynamic functional connectivity (FC) approach to resting-state fMRI and identified quasi-periodic patterns (QPPs) of brain activity constituting the most prominent resting-state networks. RESULTS The occurrence of the normative QPPs, as observed in healthy controls, was reduced in the HD model as the phenotype progressed. This uncovered progressive cessation of synchronous brain activity with phenotypic progression, which is not observed with the conventional static FC approaches. To better understand the potential underlying cause of the observed changes in these brain states, we further assessed how mutant huntingtin (mHTT) protein deposition affects astrocytes and pericytes - one of the most important effectors of neurovascular coupling, along phenotypic progression. Increased cell-type dependent mHTT deposition was observed at the age of onset of motor anomalies, in the caudate putamen, somatosensory and motor cortex, regions that are prominently involved in HD pathology as seen in humans. CONCLUSION Our findings provide meaningful insights into the development and progression of altered functional brain dynamics in this HD model and open new avenues in assessing the dynamics of whole brain states, through QPPs, in clinical HD research. HIGHLIGHTS Hyperactivity in the LCN-linked regions within short QPPs observed before motor impairment onset. DMLN QPP presents a progressive decrease in DMLN activity and occurrence along HD-like phenotype development. Breakdown of the LCN DMLN state flux at motor onset leads to a subsequent absence of the LCN DMLN QPP at an advanced HD-like stage.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marlies Verschuuren
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Dorian Pustina
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Monica van den Berg
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Johan Van Audekerke
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Isabel Pintelon
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Roger Cachope
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Winnok H. De Vos
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Annemie Van der Linden
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Mohit H. Adhikari
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marleen Verhoye
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
3
|
Koch ET, Cheng J, Ramandi D, Sepers MD, Hsu A, Fong T, Murphy TH, Yttri E, Raymond LA. Deep behavioural phenotyping of the Q175 Huntington disease mouse model: effects of age, sex, and weight. BMC Biol 2024; 22:121. [PMID: 38783261 PMCID: PMC11119712 DOI: 10.1186/s12915-024-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Huntington disease (HD) is a neurodegenerative disorder with complex motor and behavioural manifestations. The Q175 knock-in mouse model of HD has gained recent popularity as a genetically accurate model of the human disease. However, behavioural phenotypes are often subtle and progress slowly in this model. Here, we have implemented machine-learning algorithms to investigate behaviour in the Q175 model and compare differences between sexes and disease stages. We explore distinct behavioural patterns and motor functions in open field, rotarod, water T-maze, and home cage lever-pulling tasks. RESULTS In the open field, we observed habituation deficits in two versions of the Q175 model (zQ175dn and Q175FDN, on two different background strains), and using B-SOiD, an advanced machine learning approach, we found altered performance of rearing in male manifest zQ175dn mice. Notably, we found that weight had a considerable effect on performance of accelerating rotarod and water T-maze tasks and controlled for this by normalizing for weight. Manifest zQ175dn mice displayed a deficit in accelerating rotarod (after weight normalization), as well as changes to paw kinematics specific to males. Our water T-maze experiments revealed response learning deficits in manifest zQ175dn mice and reversal learning deficits in premanifest male zQ175dn mice; further analysis using PyMouseTracks software allowed us to characterize new behavioural features in this task, including time at decision point and number of accelerations. In a home cage-based lever-pulling assessment, we found significant learning deficits in male manifest zQ175dn mice. A subset of mice also underwent electrophysiology slice experiments, revealing a reduced spontaneous excitatory event frequency in male manifest zQ175dn mice. CONCLUSIONS Our study uncovered several behavioural changes in Q175 mice that differed by sex, age, and strain. Our results highlight the impact of weight and experimental protocol on behavioural results, and the utility of machine learning tools to examine behaviour in more detailed ways than was previously possible. Specifically, this work provides the field with an updated overview of behavioural impairments in this model of HD, as well as novel techniques for dissecting behaviour in the open field, accelerating rotarod, and T-maze tasks.
Collapse
Affiliation(s)
- Ellen T Koch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada.
- Present Address: Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 2T9, Canada.
| | - Judy Cheng
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ramandi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
- Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC, Canada
| | - Marja D Sepers
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Alex Hsu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tony Fong
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Eric Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| |
Collapse
|
4
|
Vasilkovska T, Salajeghe S, Vanreusel V, Van Audekerke J, Verschuuren M, Hirschler L, Warnking J, Pintelon I, Pustina D, Cachope R, Mrzljak L, Muñoz-Sanjuan I, Barbier EL, De Vos WH, Van der Linden A, Verhoye M. Longitudinal alterations in brain perfusion and vascular reactivity in the zQ175DN mouse model of Huntington's disease. J Biomed Sci 2024; 31:37. [PMID: 38627751 PMCID: PMC11022401 DOI: 10.1186/s12929-024-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Somaie Salajeghe
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Verdi Vanreusel
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Warnking
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Isabel Pintelon
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Dorian Pustina
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
| | - Roger Cachope
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
| | - Ladislav Mrzljak
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
- Present Address: Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Ignacio Muñoz-Sanjuan
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
- Present Address: Cajal Neuroscience Inc, Seattle, WA, USA
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Winnok H De Vos
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Hanrahan J, Locke DP, Cahill LS. Magnetic Resonance Imaging to Detect Structural Brain Changes in Huntington's Disease: A Review of Data from Mouse Models. J Huntingtons Dis 2024; 13:279-299. [PMID: 39213087 PMCID: PMC11494634 DOI: 10.3233/jhd-240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Structural magnetic resonance imaging (MRI) is a powerful tool to visualize 3D neuroanatomy and assess pathology and disease progression in neurodegenerative disorders such as Huntington's disease (HD). The development of mouse models of HD that reproduce many of the psychiatric, motor and cognitive impairments observed in human HD has improved our understanding of the disease and provided opportunities for testing novel therapies. Similar to the clinical scenario, MRI of mouse models of HD demonstrates onset and progression of brain pathology. Here, we provided an overview of the articles that used structural MRI in mouse models of HD to date, highlighting the differences between studies and models and describing gaps in the current state of knowledge and recommendations for future studies.
Collapse
Affiliation(s)
- Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Drew P. Locke
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
6
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Liu CF, Younes L, Tong XJ, Hinkle JT, Wang M, Phatak S, Xu X, Bu X, Looi V, Bang J, Tabrizi SJ, Scahill RI, Paulsen JS, Georgiou-Karistianis N, Faria AV, Miller MI, Ratnanather JT, Ross CA. Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington's disease. Brain Commun 2023; 5:fcad214. [PMID: 37744022 PMCID: PMC10516592 DOI: 10.1093/braincomms/fcad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Huntington's disease is caused by a CAG repeat expansion in the Huntingtin gene (HTT), coding for polyglutamine in the Huntingtin protein, with longer CAG repeats causing earlier age of onset. The variable 'Age' × ('CAG'-L), where 'Age' is the current age of the individual, 'CAG' is the repeat length and L is a constant (reflecting an approximation of the threshold), termed the 'CAG Age Product' (CAP) enables the consideration of many individuals with different CAG repeat expansions at the same time for analysis of any variable and graphing using the CAG Age Product score as the X axis. Structural MRI studies have showed that progressive striatal atrophy begins many years prior to the onset of diagnosable motor Huntington's disease, confirmed by longitudinal multicentre studies on three continents, including PREDICT-HD, TRACK-HD and IMAGE-HD. However, previous studies have not clarified the relationship between striatal atrophy, atrophy of other basal ganglia structures, and atrophy of other brain regions. The present study has analysed all three longitudinal datasets together using a single image segmentation algorithm and combining data from a large number of subjects across a range of CAG Age Product score. In addition, we have used a strategy of normalizing regional atrophy to atrophy of the whole brain, in order to determine which regions may undergo preferential degeneration. This made possible the detailed characterization of regional brain atrophy in relation to CAG Age Product score. There is dramatic selective atrophy of regions involved in the basal ganglia circuit-caudate, putamen, nucleus accumbens, globus pallidus and substantia nigra. Most other regions of the brain appear to have slower but steady degeneration. These results support (but certainly do not prove) the hypothesis of circuit-based spread of pathology in Huntington's disease, possibly due to spread of mutant Htt protein, though other connection-based mechanisms are possible. Therapeutic targets related to prion-like spread of pathology or other mechanisms may be suggested. In addition, they have implications for current neurosurgical therapeutic approaches, since delivery of therapeutic agents solely to the caudate and putamen may miss other structures affected early, such as nucleus accumbens and output nuclei of the striatum, the substantia nigra and the globus pallidus.
Collapse
Affiliation(s)
- Chin-Fu Liu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao J Tong
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Jared T Hinkle
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maggie Wang
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sanika Phatak
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Xu
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xuan Bu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Vivian Looi
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jee Bang
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah J Tabrizi
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Rachael I Scahill
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Andreia V Faria
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Adhikari MH, Vasilkovska T, Cachope R, Tang H, Liu L, Keliris GA, Munoz-Sanjuan I, Pustina D, Van der Linden A, Verhoye M. Longitudinal investigation of changes in resting-state co-activation patterns and their predictive ability in the zQ175 DN mouse model of Huntington's disease. Sci Rep 2023; 13:10194. [PMID: 37353500 PMCID: PMC10290061 DOI: 10.1038/s41598-023-36812-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by expanded (≥ 40) glutamine-encoding CAG repeats in the huntingtin gene, which leads to dysfunction and death of predominantly striatal and cortical neurons. While the genetic profile and clinical signs and symptoms of the disease are better known, changes in the functional architecture of the brain, especially before the clinical expression becomes apparent, are not fully and consistently characterized. In this study, we sought to uncover functional changes in the brain in the heterozygous (HET) zQ175 delta-neo (DN) mouse model at 3, 6, and 10 months of age, using resting-state functional magnetic resonance imaging (RS-fMRI). This mouse model shows molecular, cellular and circuitry alterations that worsen through age. Motor function disturbances are manifested in this model at 6 and 10 months of age. Specifically, we investigated, longitudinally, changes in co-activation patterns (CAPs) that are the transient states of brain activity constituting the resting-state networks (RSNs). Most robust changes in the temporal properties of CAPs occurred at the 10-months time point; the durations of two anti-correlated CAPs, characterized by simultaneous co-activation of default-mode like network (DMLN) and co-deactivation of lateral-cortical network (LCN) and vice-versa, were reduced in the zQ175 DN HET animals compared to the wild-type mice. Changes in the spatial properties, measured in terms of activation levels of different brain regions, during CAPs were found at all three ages and became progressively more pronounced at 6-, and 10 months of age. We then assessed the cross-validated predictive power of CAP metrics to distinguish HET animals from controls. Spatial properties of CAPs performed significantly better than the chance level at all three ages with 80% classification accuracy at 6 and 10 months of age.
Collapse
Affiliation(s)
- Mohit H Adhikari
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Tamara Vasilkovska
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Roger Cachope
- CHDI Management for CHDI Foundation, Princeton, NJ, USA
| | - Haiying Tang
- CHDI Management for CHDI Foundation, Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management for CHDI Foundation, Princeton, NJ, USA
| | - Georgios A Keliris
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Zarate N, Gundry K, Yu D, Casby J, Eberly LE, Öz G, Gomez‐Pastor R. Neurochemical correlates of synapse density in a Huntington's disease mouse model. J Neurochem 2023; 164:226-241. [PMID: 36272099 PMCID: PMC9892354 DOI: 10.1111/jnc.15714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Striatal medium spiny neurons are highly susceptible in Huntington's disease (HD), resulting in progressive synaptic perturbations that lead to neuronal dysfunction and death. Non-invasive imaging techniques, such as proton magnetic resonance spectroscopy (1 H-MRS), are used in HD mouse models and patients with HD to monitor neurochemical changes associated with neuronal health. However, the association between brain neurochemical alterations and synaptic dysregulation remains unknown, limiting our ability to monitor potential treatments that may affect synapse function. We conducted in vivo longitudinal 1 H-MRS in the striatum followed by ex vivo analyses of excitatory synapse density of two synaptic circuits disrupted in HD, thalamo-striatal (T-S), and cortico-striatal (C-S) pathways, to assess the relationship between neurochemical alterations and changes in synapse density. We used the zQ175(Tg/0) HD mouse model as well as zQ175 mice lacking one allele of CK2α'(zQ175(Tg/0) :CK2α'(+/-) ), a kinase previously shown to regulate synapse function in HD. Longitudinal analyses of excitatory synapse density showed early and sustained reduction in T-S synapses in zQ175 mice, preceding C-S synapse depletion, which was rescued in zQ175:CK2α'(+/-) . Changes in T-S and C-S synapses were accompanied by progressive alterations in numerous neurochemicals between WT and HD mice. Linear regression analyses showed C-S synapse number positively correlated with 1 H-MRS-measured levels of GABA, while T-S synapse number positively correlated with levels of phosphoethanolamine and negatively correlated with total creatine levels. These associations suggest that these neurochemical concentrations measured by 1 H-MRS may facilitate monitoring circuit-specific synaptic dysfunction in the zQ175 mouse model and in other HD pre-clinical studies.
Collapse
Affiliation(s)
- Nicole Zarate
- Department of Neuroscience, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Katherine Gundry
- Department of Radiology, Center for Magnetic Resonance Research, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Dahyun Yu
- Department of Neuroscience, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jordan Casby
- Department of Pharmacology, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
- Division of Biostatistics, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rocio Gomez‐Pastor
- Department of Neuroscience, Medical SchoolUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
10
|
Wu J, Möhle L, Brüning T, Eiriz I, Rafehi M, Stefan K, Stefan SM, Pahnke J. A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development. Int J Mol Sci 2022; 23:ijms232314763. [PMID: 36499090 PMCID: PMC9740291 DOI: 10.3390/ijms232314763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.
Collapse
Affiliation(s)
- Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Iván Eiriz
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 4, 1004 Rīga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| |
Collapse
|
11
|
Pérot JB, Célestine M, Palombo M, Dhenain M, Humbert S, Brouillet E, Flament J. Longitudinal multimodal MRI characterization of a knock-in mouse model of Huntington's disease reveals early gray and white matter alterations. Hum Mol Genet 2022; 31:3581-3596. [PMID: 35147158 PMCID: PMC9616570 DOI: 10.1093/hmg/ddac036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenesis of the inherited neurodegenerative disorder Huntington's disease (HD) is progressive with a long presymptomatic phase in which subtle changes occur up to 15 years before the onset of symptoms. Thus, there is a need for early, functional biomarker to better understand disease progression and to evaluate treatment efficacy far from onset. Recent studies have shown that white matter may be affected early in mutant HTT gene carriers. A previous study performed on 12 months old Ki140CAG mice showed reduced glutamate level measured by Chemical Exchange Saturation Transfer of glutamate (gluCEST), especially in the corpus callosum. In this study, we scanned longitudinally Ki140CAG mice with structural MRI, diffusion tensor imaging, gluCEST and magnetization transfer imaging, in order to assess white matter integrity over the life of this mouse model characterized by slow progression of symptoms. Our results show early defects of diffusion properties in the anterior part of the corpus callosum at 5 months of age, preceding gluCEST defects in the same region at 8 and 12 months that spread to adjacent regions. At 12 months, frontal and piriform cortices showed reduced gluCEST, as well as the pallidum. MT imaging showed reduced signal in the septum at 12 months. Cortical and striatal atrophy then appear at 18 months. Vulnerability of the striatum and motor cortex, combined with alterations of anterior corpus callosum, seems to point out the potential role of white matter in the brain dysfunction that characterizes HD and the pertinence of gluCEST and DTI as biomarkers in HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marina Célestine
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marco Palombo
- Department of Computer Science, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marc Dhenain
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Sandrine Humbert
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble 38000 , France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| |
Collapse
|
12
|
Reasoner EE, van der Plas E, Langbehn DR, Conrad AL, Koscik TR, Epping EA, Magnotta VA, Nopoulos PC. Cortical Features in Child and Adolescent Carriers of Mutant Huntingtin (mHTT). J Huntingtons Dis 2022; 11:173-178. [PMID: 35275555 PMCID: PMC9177765 DOI: 10.3233/jhd-210512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Molecular studies provide evidence that mutant huntingtin (mHTT) affects early cortical development; however, cortical development has not been evaluated in child and adolescent carriers of mHTT. OBJECTIVE To evaluate the impact of mHTT on the developmental trajectories of cortical thickness and surface area. METHODS Children and adolescents (6-18 years) participated in the KidsHD study. mHTT carrier status was determined for research purposes only to classify participants as gene expanded (GE) and gene non-expanded (GNE). Cortical features were extracted from 3T neuroimaging using FreeSurfer. Nonlinear mixed effects models were conducted to determine if age, group, and CAG repeat were associated with cortical morphometry. RESULTS Age-related changes in cortical morphometry were similar across groups. Expanded CAG repeat was not significantly associated with cortical features. CONCLUSION While striatal development is markedly different in GE and GNE, developmental change of the cortex appears grossly normal among child and adolescent carrier of mHTT.
Collapse
Affiliation(s)
- Erin E. Reasoner
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Douglas R. Langbehn
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Timothy R. Koscik
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Eric A. Epping
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Vincent A. Magnotta
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242,Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Peggy C. Nopoulos
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242,Stead Family Department of Pediatrics, University of Iowa Hospital and Clinics, Iowa City, IA 52242,Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| |
Collapse
|