1
|
Wang Y, Han X, Wan X, Niu F, Zhou C. β-Escin: An Updated Review of Its Analysis, Pharmacology, Pharmacokinetics, and Toxicity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2095-2120. [PMID: 37865870 DOI: 10.1142/s0192415x23500908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
[Formula: see text]-Escin is an oleanane-type pentacyclic triterpenoid saponin extracted from the seeds of Aesculus hippocastanum (AH), which is more widely distributed. [Formula: see text]-Escin sodium has been approved by the American FDA for clinical usage. This paper is intended to summarize an updated and comprehensive review of the pharmacological activities, pharmacokinetic properties, toxicity, and analytical methods of [Formula: see text]-escin. Studies have shown that [Formula: see text]-escin has significant antitumor, antiviral, anti-inflammatory, and other activities alongside less adverse effects and higher safety than other compounds. The review shows that the pharmacological effects of [Formula: see text]-escin involve mechanisms such as ATM/[Formula: see text]H2AX, RhoA/Rock, GSK-3[Formula: see text]/[Formula: see text]-Catenin, HER2/HER3/Akt, and PI3K/Akt signaling pathways, and Cyclin A, p21[Formula: see text], survivin, Bcl-2, Mcl-1, Caspases, TGF-[Formula: see text], MMPs, and TNF-[Formula: see text] among other inflammatory factors. [Formula: see text]-Escin has significant cytotoxicity; the use of the chitosan/xanthan gum-based polyelectrolyte complexes PA1 and PC-11 to modify it not only to reduces its toxicity, but also improves its drug efficacy. Because of this, these compounds may become a new research hotspot. [Formula: see text]-Escin in vivo metabolism can be converted by the CYP1A2 enzyme in the intestinal flora to produce [Formula: see text]-escin, deacylated, deglycosylated, and 21[Formula: see text]-[Formula: see text]-crotonoyl-protoescin, and the binding rate of the plasma proteins is higher than 90%. These are mainly metabolized by the liver, kidneys, and other organs, and excreted in the form of urine and feces. The number of reports on the specific mediators of the metabolism of [Formula: see text]-escin and their mechanisms and metabolites is relatively small; furthermore, the results are vague. Therefore, a complete and in-depth exploration of the pharmacokinetic characteristics of [Formula: see text]-escin is needed to provide a more complete and effective theoretical reference for the study of its pharmacodynamic activity.
Collapse
Affiliation(s)
- Yunyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, P. R. China
| | - Xiuwei Han
- Zhaoyuan Inspection and Testing Center, Shandong 265400, P. R. China
| | - Xinhuan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, P. R. China
| | - Fengjv Niu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, P. R. China
| | - Changzheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, P. R. China
| |
Collapse
|
3
|
Li C, He Z, Yao F, Liao S, Sun K, Sun S, Li Z, Wang Z. Role of Escin in breast cancer therapy: potential mechanism for inducing ferroptosis and synergistic antitumor activity with cisplatin. Apoptosis 2023:10.1007/s10495-023-01849-x. [PMID: 37149513 DOI: 10.1007/s10495-023-01849-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Breast cancer (BC) has threatened women worldwide for a long time, and novel treatments are needed. Ferroptosis is a new form of regulated cell death that is a potential therapeutic target for BC. In this study, we identified Escin, a traditional Chinese medicine, as a possible supplement for existing chemotherapy strategies. Escin inhibited BC cell growth in vitro and in vivo, and ferroptosis is probable to be the main cause for Escin-induced cell death. Mechanistically, Escin significantly downregulated the protein level of GPX4, while overexpression of GPX4 could reverse the ferroptosis triggered by Escin. Further study revealed that Escin could promote G6PD ubiquitination and degradation, thus inhibiting the expression of GPX4 and contributing to the ferroptosis. Moreover, proteasome inhibitor MG132 or G6PD overexpression could partially reverse Escin-induced ferroptosis, when G6PD knockdown aggravated that. In vivo study also supported that downregulation of G6PD exacerbated tumor growth inhibition by Escin. Finally, our data showed that cell apoptosis was dramatically elevated by Escin combined with cisplatin in BC cells. Taken together, these results suggest that Escin inhibits tumor growth in vivo and in vitro via regulating the ferroptosis mediated by G6PD/GPX4 axis. Our findings provide a promising therapeutic strategy for BC.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Feng Yao
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shichong Liao
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Kai Sun
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shengrong Sun
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Zhiyu Li
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Zhong Wang
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023; 29:2433-2451. [PMID: 37179581 PMCID: PMC10167906 DOI: 10.3748/wjg.v29.i16.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ferroptosis is an emerging novel form of non-apoptotic, regulated cell death that is heavily dependent on iron and characterized by rupture in plasma membrane. Ferroptosis is distinct from other regulated cell death modalities at the biochemical, morphological, and molecular levels. The ferroptotic signature includes high membrane density, cytoplasmic swelling, condensed mitochondrial membrane, and outer mitochondrial rupture with associated features of accumulation of reactive oxygen species and lipid peroxidation. The selenoenzyme glutathione peroxidase 4, a key regulator of ferroptosis, greatly reduces the lipid overload and protects the cell membrane against oxidative damage. Ferroptosis exerts a momentous role in regulating cancer signaling pathways and serves as a therapeutic target in cancers. Dysregulated ferroptosis orchestrates gastrointestinal (GI) cancer signaling pathways leading to GI tumors such as colonic cancer, pancreatic cancer, and hepatocellular carcinoma. Crosstalk exists between ferroptosis and other cell death modalities. While apoptosis and autophagy play a detrimental role in tumor progression, depending upon the factors associated with tumor microenvironment, ferroptosis plays a decisive role in either promoting tumor growth or suppressing it. Several transcription factors, such as TP53, activating transcription factors 3 and 4, are involved in influencing ferroptosis. Importantly, several molecular mediators of ferroptosis, such as p53, nuclear factor erythroid 2-related factor 2/heme oxygenase-1, hypoxia inducible factor 1, and sirtuins, coordinate with ferroptosis in GI cancers. In this review, we elaborated on key molecular mechanisms of ferroptosis and the signaling pathways that connect ferroptosis to GI tumors.
Collapse
Affiliation(s)
- Ravichandiran Rabitha
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Sethuraman Shivani
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Yahya Showket
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Ganapasam Sudhandiran
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
5
|
Fazliev S, Tursunov K, Razzokov J, Sharipov A. Escin's Multifaceted Therapeutic Profile in Treatment and Post-Treatment of Various Cancers: A Comprehensive Review. Biomolecules 2023; 13:biom13020315. [PMID: 36830684 PMCID: PMC9952945 DOI: 10.3390/biom13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Although modern medicine is advancing at an unprecedented rate, basic challenges in cancer treatment and drug resistance remain. Exploiting natural-product-based drugs is a strategy that has been proven over time to provide diverse and efficient approaches in patient care during treatment and post-treatment periods of various diseases, including cancer. Escin-a plant-derived triterpenoid saponin-is one example of natural products with a broad therapeutic scope. Initially, escin was proven to manifest potent anti-inflammatory and anti-oedematous effects. However, in the last two decades, other novel activities of escin relevant to cancer treatment have been reported. Recent studies demonstrated escin's efficacy in compositions with other approved drugs to accomplish synergy and increased bioavailability to broaden their apoptotic, anti-metastasis, and anti-angiogenetic effects. Here, we comprehensively discuss and present an overview of escin's chemistry and bioavailability, and highlight its biological activities against various cancer types. We conclude the review by presenting possible future directions of research involving escin for medical and pharmaceutical applications as well as for basic research.
Collapse
Affiliation(s)
- Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
- Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Khurshid Tursunov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan
- State Center for Expertise and Standardization of Medicines, Medical Devices and Medical Equipment, Agency for the Development of the Pharmaceutical Industry under the Ministry of Health of the Republic of Uzbekistan, Ozod Street 16, Tashkent 100002, Uzbekistan
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- College of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, Tashkent 100174, Uzbekistan
| | - Avez Sharipov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan
- Department of Analytical and Pharmaceutical Chemistry, Institute of Pharmaceutical Education and Research, Yunusota Street 46, Tashkent 100114, Uzbekistan
- Correspondence:
| |
Collapse
|
6
|
Park S, Park JM, Park M, Ko D, Kim S, Seo J, Nam KD, Jung E, Farrand L, Kim YJ, Kim JY, Seo JH. β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int 2022; 22:289. [PMID: 36127671 PMCID: PMC9490928 DOI: 10.1186/s12935-022-02713-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background The emergence of de novo or intrinsic trastuzumab resistance is exceedingly high in breast cancer that is HER2 positive and correlates with an abundant cancer stem cell (CSC)-like population. We sought to examine the capacity of β-escin, an anti-inflammatory drug, to address trastuzumab resistance in HER2-positive breast cancer cells. Methods The effect of β-escin on trastuzumab-resistant and -sensitive cell lines in vitro was evaluated for apoptosis, expression of HER2 family members, and impact on CSC-like properties. An in vivo model of trastuzumab-resistant JIMT-1 was used to examine the efficacy and toxicity of β-escin. Results β-escin induced mitochondrial-mediated apoptosis accompanied by reactive oxygen species (ROS) production and increased active p18Bax fragmentation, leading to caspase-3/-7 activation. Attenuation of CSC-related features by β-escin challenge was accompanied by marked reductions in CD44high/CD24low stem-like cells and aldehyde dehydrogenase 1 (ALDH1) activity as well as hindrance of mammosphere formation. β-escin administration also significantly retarded tumor growth and angiogenesis in a trastuzumab-resistant JIMT-1 xenograft model via downregulation of CSC-associated markers and intracellular domain HER2. Importantly, β-escin selectively inhibited malignant cells and was less toxic to normal mammary cells, and no toxic effects were found in liver and kidney function in animals. Conclusions Taken together, our findings highlight β-escin as a promising candidate for the treatment of trastuzumab-resistant HER2-positive breast cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02713-9.
Collapse
Affiliation(s)
- Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
7
|
Fourie C, du Plessis M, Mills J, Engelbrecht AM. The effect of HIF-1α inhibition in breast cancer cells prior to doxorubicin treatment under conditions of normoxia and hypoxia. Exp Cell Res 2022; 419:113334. [PMID: 36044939 DOI: 10.1016/j.yexcr.2022.113334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oxygen deprivation is a key hallmark within solid tumours that contributes to breast-tumour pathophysiology. Under these conditions, neoplastic cells activate several genes, regulated by the HIF-1 transcription factor, which alters the tumour microenvironment to promote survival - including resistance to cell death in therapeutic attempts such as doxorubicin (Dox) treatment. METHODS We investigated HIF-1ɑ as a therapeutic target to sensitize breast cancer cells to Dox treatment. Under both normoxic (21% O2) and hypoxic (∼0.1% O2) conditions, the HIF-1 inhibitor, 2-methoxyestradiol (2-ME), was investigated as an adjuvant for its ability to alter MCF-7 cell viability, apoptosis, autophagy and molecular pathways which are often associated with increased cell survival. RESULTS Here we observed that an inverse relationship between HIF-1ɑ and apoptosis exists and that Dox promotes autophagy under hypoxic conditions. Although adjuvant therapy with 2-ME induced an antagonistic effect in breast cancer cells, upregulated HIF-1ɑ expression in a hypoxic environment promotes treatment resistance and this was attenuated once HIF-1ɑ gene expression was silenced. CONCLUSION Therefore, highlighting the identification of possible hypoxia-targeting therapies for breast cancer patients can be beneficial by promoting more favourable treatment responses.
Collapse
Affiliation(s)
- Carla Fourie
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa.
| | - Manisha du Plessis
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa
| | - Justin Mills
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|