1
|
Sari AAA, El-Bahy SM, Debbabi KF, El-Sayed R, Amin AS. Quantification of arsenic in real samples using a spectrophotometric cloud point extraction of the formed ion pair with astrazon orange G. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124787. [PMID: 38972096 DOI: 10.1016/j.saa.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A novel cloud-point extraction (CPE) procedure for the determination of ultra-trace amounts of arsenic species in real samples, purchased from the local market by spectrophotometer was developed. Inorganic arsenic species analysis in water, beverages, and foods has become increasingly important in recent years, as arsenic species are considered carcinogenic and are assessed at significant levels in samples. The technique is established on a selective ternary complex of As(V) with astrazon orange G (AOG+) in the presence of tartaric acid and polyethylene glycol tertoctylphenyl ether (Triton X-114) at pH 4.0. The calibration curve developed within range 3.0-160 ng/mL with a correlation coefficient of 0.9988 for As(V) provided a preconcentration factor of 200 and a limit of detection (3S blank/m) of 0.88 ng/mL under optimum investigation conditions. The results of molar absorptivity and Sandell sensitivity are calculated and found to be 4.38 × 105 L/mol cm and 0.018 ng cm-2, respectively. The statistical treatment of data obtained from the proposed and GF-AAS procedures are compared in terms of Student's t-tests and variance ratio F-tests has revealed no significant differences. The methodology has been effectively confirmed by assessing real samples and comparing it to the GF-AAS method statistically.
Collapse
Affiliation(s)
- Abdullah A A Sari
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Khaled F Debbabi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Department of Chemistry, High Institute of Applied Science & Technology of Monastir, Monastir, Tunisia
| | - Refat El-Sayed
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt.
| |
Collapse
|
2
|
Nguyen TD, Itayama T, Tran QV, Dao TS, Iqbal MS, Pham TL. Ecotoxicity of the fluoroquinolone antibiotic delafloxacin to the water flea Simocephalus vetulus and its offspring under the influence of calcium modulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171450. [PMID: 38438028 DOI: 10.1016/j.scitotenv.2024.171450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Delafloxacin (DFX), one of the latest additions to the fluoroquinolone antibiotics, is gaining heightened recognition in human therapy due to its potential antibacterial efficacy in a wide range of applications. Concerns have arisen regarding its presence in the environment and its potential interactions with multivalent metals, such as calcium (Ca). The present study investigated the trans- and multigenerational effects of environmentally projected concentrations of DFX (100-400 μg DFX L-1) on individual- and population-level responses of parental S. vetulus (F0) and its descendants (F1) under normal (26 mg L-1) and high (78 mg L-1) Ca conditions. Exposure of the F0 generation to DFX under the normal Ca condition resulted in reduced juvenile body length (JBL), increased age-specific survival rate (lx), indicating prolonged developmental time, reduced age-specific fecundity rate (mx), and decreased population growth rate (rm). Under the high Ca condition, JBL, mx, and rm were adversely affected. Transgenerational effects of DFX existed, as F1 individuals exhibited persistent suppressions in at least one endpoint under both Ca conditions even after being transferred to a clear medium. Continuous exposure of the F1 generation to DFX had negative impacts on JBL, mx, and rm under the normal Ca condition, and on JBL and rm under the high Ca condition. However, cumulative effects were not observed, suggesting the potential development of tolerance to DFX in the F1 organisms. These findings suggest that DFX is a harmful compound for the non-target model organism S. vetulus and reveal a potential antagonism between DFX and Ca. Nevertheless, the interaction between other (fluoro)quinolones and Ca remains unclear, necessitating further research to establish this phenomenon more comprehensively, including understanding the interaction mechanism in ecotoxicological contexts.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Department of Science and Technology, Nagasaki University, Nagasaki City, Japan; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Tomoaki Itayama
- Department of Science and Technology, Nagasaki University, Nagasaki City, Japan
| | - Quang Vinh Tran
- Asian Centre for Water Research (CARE), Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | | | - Thanh Luu Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi City, Viet Nam; Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
Fei H, Cui J, Zhu S, Xia Y, Xing Y, Gao Y, Shi S. Integrative Analyses of Transcriptomics and Metabolomics in Immune Response of Leguminivora glycinivorella Mats to Beauveria bassiana Infection. INSECTS 2024; 15:126. [PMID: 38392545 PMCID: PMC10889468 DOI: 10.3390/insects15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This study utilized Beauveria bassiana to infect Leguminivora glycinivorella, analyzed the effects on the transcriptome and metabolome, and further investigated the antibacterial function of L. glycinivorella. We performed transcriptome and metabolome sequencing on the L. glycinivorella infected with B. bassiana and its control groups, and performed a joint analysis of transcriptome and metabolome results. Upon screening, 4560 differentially expressed genes were obtained in the transcriptome and 71 differentially expressed metabolites were obtained in the metabolome. On this basis, further integration of the use of transcriptomics and metabonomics combined an analysis of common enrichments of pathways of which there were three. They were glutathione S-transferase (GSTs) genes, heat shock protein (HSP) genes, and cytochrome P450 (CYP450) genes. These three pathways regulate the transport proteins, such as ppars, and thus affect the digestion and absorption of sugars and fats, thus regulating the development of pests. The above conclusion indicates that B. bassiana can affect the sugar metabolism, lipid metabolism, and amino acid metabolism pathways of L. glycinivorella, and can consume the necessary energy, protein, and lipids of L. glycinivorella. The research on the immune response mechanism of pests against pathogens can provide an important scientific basis and target for the development of immunosuppressants. This study laid an information foundation for the application of entomogenous fungi to control soybean borer at the molecular level.
Collapse
Affiliation(s)
- Hongqiang Fei
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Jilin City Academy of Agricultural Sciences, Jilin 132101, China
| | - Juan Cui
- Agriculture Science and Technology College, Jilin 132109, China
| | - Shiyu Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ye Xia
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yichang Xing
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Liu T, Zhang L. Multigenerational effects of arsenate on development and reproduction in marine copepod Tigriopus japonicus. CHEMOSPHERE 2023; 342:140158. [PMID: 37709060 DOI: 10.1016/j.chemosphere.2023.140158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Arsenic (As) is a persistent toxic substance, however, its toxicity to marine zooplankton remains unclear. In this study, copepods were exposed to a series of dissolved arsenate (As(V)) for four generations (F0-F3) and subsequently depurated in clean seawater for two generations (F4-F5) to assess multigenerational toxicity of As(V). As(V) exposure prolonged copepod development. The development time were 1.9, 2.4, and 3.4 days longer than the control in F0 when exposed to 50, 100, and 500 μg/L As(V), respectively, and the toxicity increased with generations. Moreover, As(V) reduced the reproductive capacity of copepods, and this effect become more severe during generation succession. The 10-day fecundities were reduced from 80 to 85 eggs per female in the control to 42 eggs per female, the lowest level, in 500 μg/L As(V) exposure group in F3. Nevertheless, the fecundity was recovered to the control level in the offspring of the 50 and 100 μg/L As(V) exposed groups (F4), suggesting it was an acclimation effect of copepods during As(V) exposure. In addition, the survival rate, development time, and reproductive parameters were significantly correlated with the As accumulation in copepods. Overall, As(V) exposure caused As bioaccumulation which negatively affected copepods' survival, development, and reproductive traits, and this toxic effect was amplified with generations and concentrations. Therefore, the multigenerational toxicity of As should be considered in the environmental risk assessments.
Collapse
Affiliation(s)
- Tianrui Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572025, China.
| |
Collapse
|
5
|
Nunes SM, Josende ME, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Polystyrene microplastic alters the redox state and arsenic metabolization in the freshwater bivalve Limnoperna fortunei. Toxicol Res (Camb) 2023; 12:824-832. [PMID: 37915497 PMCID: PMC10615819 DOI: 10.1093/toxres/tfad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 11/03/2023] Open
Abstract
Most organisms possess the capacity to metabolize arsenic (As) accumulating compounds to less toxic forms, thus minimizing the adverse effect induced by this metalloid. However, other contaminants may to interfere with As metabolism, contributing to the accumulation of more toxic compounds. Microplastics (MPs) are omnipresent in aquatic environment and may induce toxicological effects (alone or in combination with other contaminants) on living organisms. Therefore, the objective of the present study was to evaluate the effect of the exposure of the freshwater clam Limnoperna fortunei to a combination of MP (4 and 40 μg/L of polystyrene microbeads, 1.05 μm) and As (50 μg/L) for 48 h, evaluating the accumulation and metabolization of As and oxidative stress parameters, such as catalase (CAT), glutathione-S-transferase activities, total antioxidant competence, reduced glutathione (GSH), and lipid damage in the gills and digestive glands. Results revealed that low MP concentration disrupts the redox state of the digestive gland by a decrease in the antioxidant activity (CAT and total antioxidant capacity). GSH levels in the gills of animals exposed to MP (4 μg/L) alone and the combination of MP + As increased, concomitant with an increase in the percentage of toxic compounds, indicating the effect of MP on As metabolism. Although, few studies evaluated the effect of coexposure to MP + As by considering metabolization of metalloid in freshwater bivalve, our results revealed that exposure to MP reduced the metabolization capacity of As, favoring the accumulation of more toxic compounds besides the MP alone, which showed a pro-oxidant effect in L. fortunei.
Collapse
Affiliation(s)
- Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianchi, Ancona 60100, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianchi, Ancona 60100, Italy
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| |
Collapse
|
6
|
Müller L, Josende ME, Soares GC, Monserrat JM, Ventura-Lima J. Multigenerational effects of co-exposure to dimethylarsinic acid and polystyrene microplastics on the nematode Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85359-85372. [PMID: 37382819 DOI: 10.1007/s11356-023-28050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
In the current study, we assessed the impact of DMA (dimethylarsinic acid) and MPs (microplastics) interactions in C. elegans over the course of five generations. We found that the redox state of the organisms changed over generations as a result of exposure to both pollutants. From the third generation onward, exposure to MPs reduced GST activity, indicating reduced detoxifying abilities of these organisms. Additionally, dimethylarsinic exposure decreased the growth of organisms in the second, fourth, and fifth generations. In comparison to isolated pollutants, the cumulative effects of co-exposure to DMA and MPs seem to have been more harmful to the organisms, as demonstrated by correlation analysis. These findings demonstrate that DMA, despite being considered less hazardous than its inorganic equivalents, can still have toxic effects on species at low concentrations and the presence of MPs, can worsen these effects.
Collapse
Affiliation(s)
- Larissa Müller
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Gabriela Corrêa Soares
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil.
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
7
|
Melnikov K, Kucharíková S, Bárdyová Z, Botek N, Kaiglová A. Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol Res 2023; 72:149-166. [PMID: 37159850 PMCID: PMC10226405 DOI: 10.33549/physiolres.934977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/03/2023] [Indexed: 08/27/2023] Open
Abstract
The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.
Collapse
Affiliation(s)
- K Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University in Trnava, Slovakia.
| | | | | | | | | |
Collapse
|