1
|
Dasgupta S, Sharapova T, Mahalingaiah PK, Chorley BN, Shoieb A, Tsuji T, Dos Santos AAC, Chari R, Ebrahimi A, Dalmas Wilk DA, Pettit S, Bawa B, Vaughan E, van Vleet TR, Mitchell CA, Yuen PST. Urinary MicroRNA biomarkers of nephrotoxicity in Macaca fascicularis. Regul Toxicol Pharmacol 2024; 151:105668. [PMID: 38936797 DOI: 10.1016/j.yrtph.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Drug-induced kidney injury (DIKI) refers to kidney damage resulting from the administration of medications. The aim of this project was to identify reliable urinary microRNA (miRNAs) biomarkers that can be used as potential predictors of DIKI before disease diagnosis. This study quantified a panel of six miRNAs (miRs-210-3p, 423-5p, 143-3p, 130b-3p, 486-5p, 193a-3p) across multiple time points using urinary samples from a previous investigation evaluating effects of a nephrotoxicant in cynomolgus monkeys. Exosome-associated miRNA exhibited distinctive trends when compared to miRNAs quantified in whole urine, which may reflect a different urinary excretion mechanism of miRNAs than those released passively into the urine. Although further research and mechanistic studies are required to elucidate how these miRNAs regulate signaling in disease pathways, we present, for the first time, data that several miRNAs displayed strong correlations with histopathology scores, thus indicating their potential use as biomarkers to predict the development of DIKI in preclinical studies and clinical trials. Also, these findings can potentially be translated into other non-clinical species or human for the detection of DIKI.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | | | - Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Takayuki Tsuji
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alef A C Dos Santos
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rohit Chari
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | | | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Connor S, Roberts RA, Tong W. Drug-induced kidney injury: challenges and opportunities. Toxicol Res (Camb) 2024; 13:tfae119. [PMID: 39105044 PMCID: PMC11299199 DOI: 10.1093/toxres/tfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Drug-induced kidney injury (DIKI) is a frequently reported adverse event, associated with acute kidney injury, chronic kidney disease, and end-stage renal failure. Prospective cohort studies on acute injuries suggest a frequency of around 14%-26% in adult populations and a significant concern in pediatrics with a frequency of 16% being attributed to a drug. In drug discovery and development, renal injury accounts for 8 and 9% of preclinical and clinical failures, respectively, impacting multiple therapeutic areas. Currently, the standard biomarkers for identifying DIKI are serum creatinine and blood urea nitrogen. However, both markers lack the sensitivity and specificity to detect nephrotoxicity prior to a significant loss of renal function. Consequently, there is a pressing need for the development of alternative methods to reliably predict drug-induced kidney injury (DIKI) in early drug discovery. In this article, we discuss various aspects of DIKI and how it is assessed in preclinical models and in the clinical setting, including the challenges posed by translating animal data to humans. We then examine the urinary biomarkers accepted by both the US Food and Drug Administration (FDA) and the European Medicines Agency for monitoring DIKI in preclinical studies and on a case-by-case basis in clinical trials. We also review new approach methodologies (NAMs) and how they may assist in developing novel biomarkers for DIKI that can be used earlier in drug discovery and development.
Collapse
Affiliation(s)
- Skylar Connor
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, United States
| | - Ruth A Roberts
- ApconiX Ltd, Alderley Park, Alderley Edge, SK10 4TG, United Kingdom
- University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Weida Tong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
3
|
Xu Y, Chen J, Sui X, Zhang Y, Zhang A, Lin Z, Liu X, Chen J. Ultra-sensitive electrochemiluminescent biosensor for miRNA based on CRISPR/Cas13a trans-cleavage-triggered hybridization chain reaction and magnetic-assisted enrichment. Mikrochim Acta 2023; 190:393. [PMID: 37712989 DOI: 10.1007/s00604-023-05962-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The great selectivity and trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a had been coupled with high amplification efficiency of hybridization chain reaction (HCR) and magnetic-assisted enrichment, high sensitivity of electrochemiluminescence (ECL) detection to develop an ultra-sensitive biosensor for microRNA-21 (miRNA-21). The CRISPR/Cas13a was used to recognize target RNA with high specificity and performed the trans-cleavage activity. An initiation strand was generated to bind to the probe on the surface of nanomagnetic beads and then trigged HCR to produce long double-strand DNAs (dsDNAs) to realize signal amplification. Ru(phen)32+ can be inserted in the groove of the dsDNAs and acts as the ECL indicator, which can be separated through magnetic enrichment and allowed the platform to reduce the signal background. Under the optimized conditions, there is a good linear correlation between the ECL intensity and the logarithm of miRNA-21 concentration in the range 1 fM-10 nM; the limit of detection (LOD) was 0.53 fM. The proposed system was applied to detect miRNA-21 from the urine of acute kidney injury (AKI) patients with good results.
Collapse
Affiliation(s)
- Yunpeng Xu
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Jiahui Chen
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xiaolu Sui
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yanzi Zhang
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Aisha Zhang
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analysis Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350116, People's Republic of China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China.
| | - Jihong Chen
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China.
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
4
|
Hasson DC, Zhang B, Krallman K, Rose JE, Kempton KM, Steele P, Devarajan P, Goldstein SL, Alder MN. Acute kidney injury biomarker olfactomedin 4 predicts furosemide responsiveness. Pediatr Nephrol 2023; 38:3153-3161. [PMID: 37010559 DOI: 10.1007/s00467-023-05920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is associated with increased morbidity and mortality in critically ill patients. Olfactomedin 4 (OLFM4), a secreted glycoprotein expressed in neutrophils and stressed epithelial cells, is upregulated in loop of Henle (LOH) cells following AKI. We hypothesized that urine OLFM4 (uOLFM4) will increase in patients with AKI and may predict furosemide responsiveness. METHODS Urine from critically ill children was collected prospectively and tested for uOLFM4 concentrations with a Luminex immunoassay. Severe AKI was defined by KDIGO (stage 2/3) serum creatinine criteria. Furosemide responsiveness was defined as > 3 mL/kg/h of urine output in the 4 h after a 1 mg/kg IV furosemide dose administered as part of standard of care. RESULTS Fifty-seven patients contributed 178 urine samples. Irrespective of sepsis status or AKI cause, uOLFM4 concentrations were higher in patients with AKI (221 ng/mL [IQR 93-425] vs. 36 ng/mL [IQR 15-115], p = 0.007). uOLFM4 concentrations were higher in patients unresponsive to furosemide (230 ng/mL [IQR 102-534] vs. 42 ng/mL [IQR 21-161], p = 0.04). Area under the receiver operating curve for association with furosemide responsiveness was 0.75 (95% CI, 0.60-0.90). CONCLUSIONS AKI is associated with increased uOLFM4. Higher uOLFM4 is associated with a lack of response to furosemide. Further testing is warranted to determine whether uOLFM4 could identify patients most likely to benefit from earlier escalation from diuretics to kidney replacement therapy to maintain fluid balance. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Denise C Hasson
- Division of Pediatric Critical Care Medicine, NYU Langone Health, Hassenfeld Children's Hospital, 430 East 34Th Street, New York, NY, 10016, USA.
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Bin Zhang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelli Krallman
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James E Rose
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kristalynn M Kempton
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul Steele
- Division of Anatomic and Clinical Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew N Alder
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Hou J, Sun X. Let -7i : A key player and a promising biomarker in diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:909-919. [PMID: 37587077 PMCID: PMC10930445 DOI: 10.11817/j.issn.1672-7347.2023.220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 08/18/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding single-stranded small RNAs that regulate gene expression by recognizing homologous sequences and interfering with transcriptional, translational or epigenetic processes. MiRNAs are involved in a variety of disease processes, and regulate the physiological and pathological status of diseases by modulating target cell activity, migration, invasion, apoptosis, autophagy and other processes. Among them, let-7i is highly expressed in various systems, which participates in the process of tumors, cardiovascular and cerebrovascular diseases, fibrotic diseases, inflammatory diseases, neurodegenerative diseases and other diseases, and plays a positive or negative regulatory role in these diseases through different signal pathways and key molecules. Moreover, it can be used as an early diagnosis and prognostic marker for a variety of diseases and become a potential therapeutic target. As a biomarker, let-7i is frequently tested in combination with other miRNAs to diagnose multiple diseases and evaluate the clinical treatment or prognosis.
Collapse
Affiliation(s)
- Jiali Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| |
Collapse
|
6
|
Hwang DB, Seo Y, Lee E, Won DH, Kim C, Kang M, Jeon Y, Kim HS, Park JW, Yun JW. Diagnostic potential of serum miR-532-3p as a circulating biomarker for experimental intrinsic drug-induced liver injury by acetaminophen and cisplatin in rats. Food Chem Toxicol 2023:113890. [PMID: 37308052 DOI: 10.1016/j.fct.2023.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Evaluating tissue injury largely depends on serum biochemical analysis despite insufficient tissue specificity and low sensitivity. Therefore, attention has been paid to the potential of microRNAs (miRNAs) to overcome the limitations of the current diagnostic tools, as tissue-enriched miRNAs are detected in the blood upon tissue injury. First, using a cisplatin-injected rats, we screened a specific pattern of altered hepatic miRNAs and their target mRNAs. Subsequently, we identified novel liver-specific circulating miRNAs for drug-induced liver injury by comparing miRNA expression changes in organs and serum. RNA sequencing revealed that 32 hepatic miRNAs were differentially expressed (DE) in the cisplatin-treated group. Furthermore, among the 1217 targets predicted using miRDB on these DE-miRNAs, 153 hepatic genes involved in different liver function-related pathways and processes were found to be dysregulated by cisplatin. Next, comparative analyses of the liver, kidneys, and serum DE-miRNAs were conducted to select circulating miRNA biomarker candidates reflecting drug-induced liver injury. Finally, among the four liver-specific circulating miRNAs selected based on their expression patterns in tissue and serum, miR-532-3p was increased in the serum after cisplatin or acetaminophen administration. Our findings suggest that miR-532-3p is potential as a serum biomarker for identifying drug-induced liver injury, leading to the accurate diagnosis.
Collapse
Affiliation(s)
- Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Eunji Lee
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - MinHwa Kang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Williams AC, Singh V, Liu P, Kriegel AJ. Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury. Noncoding RNA 2023; 9:ncrna9020024. [PMID: 37104006 PMCID: PMC10141369 DOI: 10.3390/ncrna9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R2 = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.
Collapse
Affiliation(s)
- Adaysha C. Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vaishali Singh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Lombari P, Mallardo M, Petrazzuolo O, Amruthraj Nagoth J, Fiume G, Scanni R, Iervolino A, Damiano S, Coppola A, Borriello M, Ingrosso D, Perna AF, Zacchia M, Trepiccione F, Capasso G. miRNA-23a modulates sodium-hydrogen exchanger 1 expression: studies in medullary thick ascending limb of salt-induced hypertensive rats. Nephrol Dial Transplant 2023; 38:586-598. [PMID: 35921220 DOI: 10.1093/ndt/gfac232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.
Collapse
Affiliation(s)
- Patrizia Lombari
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Oriana Petrazzuolo
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Joseph Amruthraj Nagoth
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Fiume
- Departments of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Roberto Scanni
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Iervolino
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alessandra F Perna
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Miriam Zacchia
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
9
|
Barreiro K, Lay AC, Leparc G, Tran VDT, Rosler M, Dayalan L, Burdet F, Ibberson M, Coward RJM, Huber TB, Krämer BK, Delic D, Holthofer H. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J Extracell Vesicles 2023; 12:e12304. [PMID: 36785873 PMCID: PMC9925963 DOI: 10.1002/jev2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Abigail C. Lay
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Van Du T. Tran
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Marcel Rosler
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Lusyan Dayalan
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Frederic Burdet
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mark Ibberson
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Richard J. M. Coward
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
10
|
Copur S, Tanriover C, Yavuz F, Soler MJ, Ortiz A, Covic A, Kanbay M. Novel strategies in nephrology: what to expect from the future? Clin Kidney J 2022; 16:230-244. [PMID: 36755838 PMCID: PMC9900595 DOI: 10.1093/ckj/sfac212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global case of death by 2040. Its largest impact is on premature mortality but the number of persons with kidney failure requiring renal replacement therapy (RRT) is also increasing dramatically. Current RRT is suboptimal due to the shortage of kidney donors and dismal outcomes associated with both hemodialysis and peritoneal dialysis. Kidney care needs a revolution. In this review, we provide an update on emerging knowledge and technologies that will allow an earlier diagnosis of CKD, addressing the current so-called blind spot (e.g. imaging and biomarkers), and improve renal replacement therapies (wearable artificial kidneys, xenotransplantation, stem cell-derived therapies, bioengineered and bio-artificial kidneys).
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Maria J Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Spain,Nephrology and Kidney Transplant Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital, and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | | |
Collapse
|
11
|
Hasson DC, Krallman K, VanDenHeuvel K, Menon S, Piraino G, Devarajan P, Goldstein SL, Alder M. Olfactomedin 4 as a novel loop of Henle-specific acute kidney injury biomarker. Physiol Rep 2022; 10:e15453. [PMID: 36117416 PMCID: PMC9483618 DOI: 10.14814/phy2.15453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023] Open
Abstract
Acute kidney injury (AKI) is associated with morbidity and mortality. Urinary biomarkers may disentangle its clinical heterogeneity. Olfactomedin 4 (OLFM4) is a secreted glycoprotein expressed in stressed neutrophils and epithelial cells. In septic mice, OLFM4 expression localized to the kidney's loop of Henle (LOH) and was detectable in the urine. We hypothesized that urine OLFM4 (uOLFM4) will be increased in patients with AKI and sepsis. Urine from critically ill pediatric patients was obtained from a prospective study based on AKI and sepsis status. uOLFM4 was quantified with a Luminex immunoassay. AKI was defined by KDIGO severe criteria. Sepsis status was extracted from the medical record based on admission diagnosis. Immunofluorescence on pediatric kidney biopsies was performed with NKCC2, uromodulin and OLFM4 specific antibodies. Eight patients had no sepsis, no AKI; 7 had no sepsis but did have AKI; 10 had sepsis, no AKI; 11 had sepsis and AKI. Patients with AKI had increased uOLFM4 compared to no/stage 1 AKI (p = 0.044). Those with sepsis had increased uOLFM4 compared to no sepsis (p = 0.026). uOLFM4 and NGAL were correlated (r2 0.59, 95% CI 0.304-0.773, p = 0.002), but some patients had high uOLFM4 and low NGAL, and vice versa. Immunofluorescence on kidney biopsies demonstrated OLFM4 colocalization with NKCC2 and uromodulin, suggesting expression in the thick ascending LOH (TALH). We conclude that AKI and sepsis are associated with increased uOLFM4. uOLFM4 and NGAL correlated in many patients, but was poor in others, suggesting these markers may differentiate AKI subgroups. Given OLFM4 colocalization to human TALH, we propose OLFM4 may be a LOH-specific AKI biomarker.
Collapse
Affiliation(s)
- Denise C. Hasson
- Division of Critical Care MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Division of Nephrology and HypertensionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kelli Krallman
- Division of Nephrology and HypertensionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Katherine VanDenHeuvel
- Division of Pathology and Laboratory MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Shina Menon
- Division of Nephrology and HypertensionSeattle Children's HospitalSeattleWashingtonUSA
| | - Giovanna Piraino
- Division of Critical Care MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Prasad Devarajan
- Division of Nephrology and HypertensionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Stuart L. Goldstein
- Division of Nephrology and HypertensionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Matthew N. Alder
- Division of Critical Care MedicineCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
12
|
Petzuch B, Benardeau A, Hofmeister L, Meyer J, Hartmann E, Pavkovic M, Mathar I, Sandner P, Ellinger-Ziegelbauer H. Urinary miRNA profiles in chronic kidney injury - Benefits of extracellular vesicle enrichment and miRNAs as potential biomarkers for renal fibrosis, glomerular injury and endothelial dysfunction. Toxicol Sci 2022; 187:35-50. [PMID: 35244176 DOI: 10.1093/toxsci/kfac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Micro-RNAs (miRNAs) are regulators of gene expression and play an important role in physiological homeostasis and disease. In biofluids miRNAs can be found in protein complexes or in extracellular vesicles (EVs). Altered urinary miRNAs are reported as potential biomarkers for chronic kidney disease (CKD). In this context we compared established urinary protein biomarkers for kidney injury with urinary miRNA profiles in obese ZSF1 and hypertensive renin transgenic rats. Additionally, the benefit of urinary EV enrichment was investigated in vivo and the potential association of urinary miRNAs with renal fibrosis in vitro. Kidney damage in both rat models was confirmed by histopathology, proteinuria, and increased levels of urinary protein biomarkers. In total 290 miRNAs were elevated in obese ZSF1 rats compared to lean controls, while 38 miRNAs were altered in obese ZSF1 rats during 14 to 26 weeks of age. These 38 miRNAs correlated better with disease progression than established urinary protein biomarkers. MiRNAs increased in obese ZSF1 rats were associated with renal inflammation, fibrosis, and glomerular injury. Eight miRNAs were also changed in urinary EVs of renin transgenic rats, including one which might play a role in endothelial dysfunction. EV enrichment increased the number and detection level of several miRNAs implicated in renal fibrosis in vitro and in vivo. Our results show the benefit of EV enrichment for miRNA detection and the potential of total urine and urinary EV-associated miRNAs as biomarkers of altered kidney physiology, renal fibrosis and glomerular injury, and disease progression in hypertension and obesity induced CKD.
Collapse
Affiliation(s)
- B Petzuch
- Bayer AG, Pharmaceuticals, Investigational Toxicology, 42096 Wuppertal, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Investigative Toxicology, Department of Non-Clinical Drug Safety, 88400 Biberach (Riß), Germany
| | - A Benardeau
- Novo Nordisk A/S,Cardio-Renal Biology, Måløv, Denmark
| | - L Hofmeister
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - J Meyer
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - E Hartmann
- Bayer AG, Pharmaceuticals, Toxicology, Pathology and Clinical Pathology, 42096 Wuppertal, Germany
| | - M Pavkovic
- Bayer AG, Pharmaceuticals, Investigational Toxicology, 42096 Wuppertal, Germany
| | - I Mathar
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - P Sandner
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany.,Hannover Medical School, Institute of Pharmacology, 30625 Hannover, Germany
| | | |
Collapse
|
13
|
Cave MC, Pinkston CM, Rai SN, Wahlang B, Pavuk M, Head KZ, Carswell GK, Nelson GM, Klinge CM, Bell DA, Birnbaum LS, Chorley BN. Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17003. [PMID: 34989596 PMCID: PMC8734566 DOI: 10.1289/ehp9467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress. OBJECTIVES We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort. METHODS Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed. RESULTS The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks. DISCUSSION These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.
Collapse
Affiliation(s)
- Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Liver Transplant Program at UofL Health–Jewish Hospital Trager Transplant Center, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
| | - Christina M. Pinkston
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Shesh N. Rai
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Gleta K. Carswell
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gail M. Nelson
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas A. Bell
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Brian N. Chorley
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Abstract
Drug induced kidney injury is one of the leading causes of failure of drug development programs in the clinic. Early prediction of renal toxicity potential of drugs is crucial to the success of drug candidates in the clinic. The dynamic nature of the functioning of the kidney and the presence of drug uptake proteins introduce additional challenges in the prediction of renal injury caused by drugs. Renal injury due to drugs can be caused by a wide variety of mechanisms and can be broadly classified as toxic or obstructive. Several biomarkers are available for in vitro and in vivo detection of renal injury. In vitro static and dynamic (microfluidic) cellular models and preclinical models can provide valuable information regarding the toxicity potential of drugs. Differences in pharmacology and subsequent disconnect in biomarker response, differences in the expression of transporter and enzyme proteins between in vitro to in vivo systems and between preclinical species and humans are some of the limitations of current experimental models. The progress in microfluidic (kidney-on-chip) platforms in combination with the ability of 3-dimensional cell culture can help in addressing some of these issues in the future. Finally, newer in silico and computational techniques like physiologically based pharmacokinetic modeling and machine learning have demonstrated potential in assisting prediction of drug induced kidney injury.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Drug Metabolism and Pharmacokinetics, Millennium Pharmaceuticals, a fully owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|