1
|
Yuzefovych LV, Noh HL, Suk S, Schuler AM, Mulekar MS, Pastukh VM, Kim JK, Rachek LI. Mitochondria-Targeted DNA Repair Glycosylase hOGG1 Protects Against HFD-Induced Liver Oxidative Mitochondrial DNA Damage and Insulin Resistance in OGG1-Deficient Mice. Int J Mol Sci 2024; 25:12168. [PMID: 39596235 PMCID: PMC11595121 DOI: 10.3390/ijms252212168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
8-oxoguanine DNA glycosylase-1 (OGG1) is a DNA glycosylase mediating the first step in base excision repair which removes 7,8-dihydro-8-oxoguanine (8-oxoG) and repairs oxidized nuclear and mitochondrial DNA. Previous studies showed that OGG1 deficiency results in an increased susceptibility to high-fat diet (HFD)-induced obesity and metabolic dysfunction in mice, suggesting a crucial role of OGG1 in metabolism. However, the tissue-specific mechanisms of how OGG1 deficiency leads to insulin resistance is unknown. Thus, in the current study, we used a hyperinsulinemic-euglycemic clamp to evaluate in-depth glucose metabolism in male wild-type (WT) mice and Ogg1-/- (Ogg1-KO) mice fed an HFD. Ogg1-KO mice fed HFD were more obese, with significantly lower hepatic insulin action compared to WT/HFD mice. Targeting human OGG1 to mitochondria protected against HFD-induced obesity, insulin resistance, oxidative mitochondrial DNA damage in the liver and showed decreased expression of liver gluconeogenic genes in Ogg1-KO mice, suggesting a putative protective mechanism. Additionally, several subunits of oxidative phosphorylation protein levels were noticeably increased in Ogg1-KO/Tg compared to Ogg1-KO mice fed an HFD which was associated with improved insulin signaling. Our findings demonstrate the crucial role of mitochondrial hOGG1 in HFD-induced insulin resistance and propose several protective mechanisms which can further direct the development of therapeutic treatment.
Collapse
Affiliation(s)
- Larysa V. Yuzefovych
- Departments of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anne Michele Schuler
- Departments of Microbiology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Madhuri S. Mulekar
- Department of Mathematics and Statistics, College of Art and Science, University of South Alabama, Mobile, AL 36688, USA
| | - Viktor M. Pastukh
- Departments of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lyudmila I. Rachek
- Departments of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
2
|
Zhong Y, Zhang X, Feng R, Fan Y, Zhang Z, Zhang QW, Wan JB, Wang Y, Yu H, Li G. OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage. Med Res Rev 2024; 44:2825-2848. [PMID: 39119702 DOI: 10.1002/med.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.
Collapse
Affiliation(s)
- Yunxiao Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Ruibing Feng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, China
- Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Qing-Wen Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| |
Collapse
|
3
|
Alhusain AF, Mahmoud MA, Alhamami HN, Ebrahim Alobid S, Ansari MA, Ahmad SF, Nadeem A, Bakheet SA, Harisa GI, Attia SM. Salubrious effects of proanthocyanidins on behavioral phenotypes and DNA repair deficiency in the BTBR mouse model of autism. Saudi Pharm J 2024; 32:102187. [PMID: 39493830 PMCID: PMC11530837 DOI: 10.1016/j.jsps.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Autism is a neurodevelopmental disorder distinguished by impaired social interaction and repetitive behaviors. Global estimates indicate that autism affects approximately 1.6% of children, with the condition progressively becoming more prevalent over time. Despite noteworthy progress in autism research, the condition remains untreatable. This serves as a driving force for scientists to explore new approaches to disease management. Autism is linked to elevated levels of oxidative stress and disturbances in the DNA repair mechanism, which may potentially play a role in its comorbidities development. The current investigation aimed to evaluate the beneficial effect of the naturally occurring flavonoid proanthocyanidins on the behavioral characteristics and repair efficacy of autistic BTBR mice. Moreover, the mechanisms responsible for these effects were clarified. The present findings indicate that repeated administration of proanthocyanidins effectively reduces altered behavior in BTBR animals without altering motor function. Proanthocyanidins decreased oxidative DNA strand breaks and accelerated the rate of DNA repair in autistic animals, as evaluated by the modified comet test. In addition, proanthocyanidins reduced the elevated oxidative stress and recovered the disrupted DNA repair mechanism in the autistic animals by decreasing the expressions of Gadd45a and Parp1 levels and enhancing the expressions of Ogg1, P53, and Xrcc1 genes. This indicates that proanthocyanidins have significant potential as a new therapeutic strategy for alleviating autistic features.
Collapse
Affiliation(s)
- Abdulelah F. Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saad Ebrahim Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Drake DM, Afsharian K, Or B, Shapiro AM, Lai ML, Miller L, Wells PG. BRCA1 protein dose-dependent risk for embryonic oxidative DNA damage, embryopathies and neurodevelopmental disorders with and without ethanol exposure. Redox Biol 2024; 70:103070. [PMID: 38359745 PMCID: PMC10877410 DOI: 10.1016/j.redox.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kian Afsharian
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Or
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron M Shapiro
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Michelle L Lai
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lutfiya Miller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Khoodoruth MAS, Chut-kai Khoodoruth WN, Al Alwani R. Exploring the epigenetic landscape: The role of 5-hydroxymethylcytosine in neurodevelopmental disorders. CAMBRIDGE PRISMS. PRECISION MEDICINE 2024; 2:e5. [PMID: 38699519 PMCID: PMC11062787 DOI: 10.1017/pcm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
Recent advances in genetic and epigenetic research have underscored the significance of 5-hydroxymethylcytosine (5hmC) in neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and intellectual disability (ID), revealing its potential as both a biomarker for early detection and a target for novel therapeutic strategies. This review article provides a comprehensive analysis of the role of 5hmC in NDDs by examining both animal models and human studies. By examining mouse models, studies have demonstrated that prenatal environmental challenges, such as maternal infection and food allergies, lead to significant epigenetic alterations in 5hmC levels, which were associated with NDDs in offspring, impacting social behavior, cognitive abilities and increasing ASD-like symptoms. In human studies, researchers have linked alterations in 5hmC levels NDDs through studies in individuals with ASD, fragile X syndrome, TET3 deficiency and ID, specifically identifying significant epigenetic modifications in genes such as GAD1, RELN, FMR1 and EN-2, suggesting that dysregulation of 5hmC played a critical role in the pathogenesis of these disorders and highlighted the potential for targeted therapeutic interventions. Moreover, we explore the implications of these findings for the development of epigenetic therapies aimed at modulating 5hmC levels. The review concludes with a discussion on future directions for research in this field, such as machine learning, emphasizing the need for further studies to elucidate the complex mechanisms underlying NDDs and to translate these findings into clinical practice. This paper not only advances our understanding of the epigenetic landscape of NDDs but also opens up new avenues for diagnosis and treatment, offering hope for individuals affected by these conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Department of Child and Adolescent Psychiatry, Hamad Medical Corporation, Doha, Qatar
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Rafaa Al Alwani
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
6
|
Lopes LA, Davenport C, Ramos Torres E, Chlebowski A, Mikami A, Raber J, Ruth Torres E, Kisby G. Neuropathological Examination of Mice Chronically Exposed to Secondhand Smoke. Mil Med 2023; 188:575-583. [PMID: 37948264 PMCID: PMC10637311 DOI: 10.1093/milmed/usad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 06/27/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Around 21.6-35% of military personnel are smokers, while 12.26% of them have been regularly exposed to second-hand smoke (SHS). Second-hand smoke is considered an important risk factor for neurological diseases because it can induce oxidative stress, DNA damage, and disrupt DNA repair pathways. MATERIAL AND METHODS The brain of air (sham) or SHS exposed mice was cryoperserved, sectioned, and placed on a glass slide before immunoprobing them with antibodies to observe for oxidative DNA damage (8-oxoG), oxidative DNA repair (8-oxoguanine DNA glycosylase 1, Ogg1; apurinic/apyrimidinic endonuclease, Ape1), and inflammatory (glial fibrillary acidic protein) proteins. RESULTS Nissl staining of the prefrontal cortex (PFCTX) revealed the presence of dark, shrunken cells, hippocampal thinning, and the presence of activated astrocytes in SHS exposed mice. 8-oxoG staining was also more prominent in the PFCTX and hippocampus (HIPP) of SHS exposed mice. Ogg1 staining was reduced in the PFCTX and CA3 hippocampal neurons of SHS exposed mice, whereas it was more prominent in CA1 and CA4 hippocampal neurons. In contrast, Ape1 staining was more prominent in the PFCTX and the HIPP of SHS exposed mice. CONCLUSIONS These studies demonstrate that oxidative DNA damage (8-oxoG) was elevated and oxidative DNA repair (Ape1 and Ogg1) was altered in the brain of SHS exposed mice. In addition, activated astrocytes (i.e., glial fibrillary acidic protein) were also observed in the brain of SHS exposed mice. Therefore, SHS induces both oxidative DNA damage and repair as well as inflammation as possible underlying mechanism(s) of the cognitive decline and metabolic changes that were observed in chronically exposed mice. A better understanding of how chronic exposure to SHS induces cognitive dysfunction among military personnel could help improve the combat readiness of U.S. soldiers as well as reduce the financial burden on the DOD and veterans' families.
Collapse
Affiliation(s)
- Leilani A Lopes
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Conor Davenport
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Estefania Ramos Torres
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Anna Chlebowski
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Anna Mikami
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Eileen Ruth Torres
- Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, OR 97355, USA
| |
Collapse
|
7
|
Bhatia S, Bodenstein D, Cheng AP, Wells PG. Altered Epigenetic Marks and Gene Expression in Fetal Brain, and Postnatal Behavioural Disorders, Following Prenatal Exposure of Ogg1 Knockout Mice to Saline or Ethanol. Cells 2023; 12:2308. [PMID: 37759530 PMCID: PMC10527575 DOI: 10.3390/cells12182308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Oxoguanine glycosylase 1 (OGG1) is widely known to repair the reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG), and more recently was shown to act as an epigenetic modifier. We have previously shown that saline-exposed Ogg1 -/- knockout progeny exhibited learning and memory deficits, which were enhanced by in utero exposure to a single low dose of ethanol (EtOH) in both Ogg1 +/+ and -/- progeny, but more so in Ogg1 -/- progeny. Herein, OGG1-deficient progeny exposed in utero to a single low dose of EtOH or its saline vehicle exhibited OGG1- and/or EtOH-dependent alterations in global histone methylation and acetylation, DNA methylation and gene expression (Tet1 (Tet Methylcytosine Dioxygenase 1), Nlgn3 (Neuroligin 3), Hdac2 (Histone Deacetylase 2), Reln (Reelin) and Esr1 (Estrogen Receptor 1)) in fetal brains, and behavioural changes in open field activity, social interaction and ultrasonic vocalization, but not prepulse inhibition. OGG1- and EtOH-dependent changes in Esr1 and Esr2 mRNA and protein levels were sex-dependent, as was the association of Esr1 gene expression with gene activation mark histone H3 lysine 4 trimethylation (H3K4me3) and gene repression mark histone H3 lysine 27 trimethylation (H3K27me3) measured via ChIP-qPCR. The OGG1-dependent changes in global epigenetic marks and gene/protein expression in fetal brains, and postnatal behavioural changes, observed in both saline- and EtOH-exposed progeny, suggest the involvement of epigenetic mechanisms in developmental disorders mediated by 8-oxoG and/or OGG1. Epigenetic effects of OGG1 may be involved in ESR1-mediated gene regulation, which may be altered by physiological and EtOH-enhanced levels of ROS formation, possibly contributing to sex-dependent developmental disorders observed in Ogg1 knockout mice. The OGG1- and EtOH-dependent associations provide a basis for more comprehensive mechanistic studies to determine the causal involvement of oxidative DNA damage and epigenetic changes in ROS-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - David Bodenstein
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Ashley P. Cheng
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Peter G. Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
8
|
Pan L, Vlahopoulos S, Tanner L, Bergwik J, Bacsi A, Radak Z, Egesten A, Ba X, Brasier AR, Boldogh I. Substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) reprograms mucosal adaptations to chronic airway injury. Front Immunol 2023; 14:1186369. [PMID: 37614238 PMCID: PMC10442650 DOI: 10.3389/fimmu.2023.1186369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Recent advances have uncovered the non-random distribution of 7, 8-dihydro-8-oxoguanine (8-oxoGua) induced by reactive oxygen species, which is believed to have epigenetic effects. Its cognate repair protein, 8-oxoguanine DNA glycosylase 1 (OGG1), reads oxidative substrates and participates in transcriptional initiation. When redox signaling is activated in small airway epithelial cells, the DNA repair function of OGG1 is repurposed to transmit acute inflammatory signals accompanied by cell state transitions and modification of the extracellular matrix. Epithelial-mesenchymal and epithelial-immune interactions act cooperatively to establish a local niche that instructs the mucosal immune landscape. If the transitional cell state governed by OGG1 remains responsive to inflammatory mediators instead of differentiation, the collateral damage provides positive feedback to inflammation, ascribing inflammatory remodeling to one of the drivers in chronic pathologies. In this review, we discuss the substrate-specific read through OGG1 has evolved in regulating the innate immune response, controlling adaptations of the airway to environmental and inflammatory injury, with a focus on the reader function of OGG1 in initiation and progression of epithelial to mesenchymal transitions in chronic pulmonary disease.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Spiros Vlahopoulos
- Horemeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary, Debrecen, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|