1
|
Savoca M, Takemoto K, Hu J, Li L, Jacob Kendrick B, Zhong Z, Lemasters JJ. MitoTracker Red for isolation of zone-specific hepatocytes and characterization of hepatic sublobular metabolism. Biochem Biophys Res Commun 2024; 735:150457. [PMID: 39146811 PMCID: PMC11532002 DOI: 10.1016/j.bbrc.2024.150457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The liver lobule is divided into three zones or regions: periportal (PP or Zone 1) that is highly oxidative and active in ureagenesis, pericentral (PC or Zone 3) that is more glycolytic, and midzonal (MZ or Zone 2) with intermediate characteristics. AIM Our goal was to isolate and metabolically characterize hepatocytes from specific sublobular zones. METHODS Mice were administered rhodamine123 (Rh123) or MitoTracker Red (MTR) prior to intravital imaging, liver fixation, or hepatocyte isolation. After in vivo MTR, hepatocytes were isolated and sorted based on MTR fluorescence intensity. Alternatively, E-cadherin (Ecad) and cytochrome P450 2E1 (CYP2E1) immunolabeling was performed in fixed liver slices. Ecad and CYP2E1 gene expression in sorted hepatocytes was assessed by qPCR. Oxygen consumption rates (OCR) of sorted hepatocytes were also assessed. RESULTS Multiphoton microscopy showed Rh123 and MTR fluorescence distributed zonally, decreasing from PP to PC in a flow-dependent fashion. In liver cross-sections, Ecad was expressed periportally and CYP2E1 pericentrally in association with high and low MTR labeling, respectively. Based on MTR fluorescence, hepatocytes were sorted into PP, MZ, and PC populations with PP and PC hepatocytes enriched in Ecad and CYP2E1, respectively. OCR of PP hepatocytes was ∼4 times that of PC hepatocytes. CONCLUSIONS MTR treatment in vivo delineates sublobular hepatic zones and can be used to sort hepatocytes zonally. PP hepatocytes have substantially greater OCR compared to PC and MZ. The results also indicate a sharp midzonal demarcation between hepatocytes with PP characteristics (Ecad) and those with PC features (CYP2E1). This new method to sort hepatocytes in a zone-specific fashion holds the potential to shed light on sublobular hepatocyte metabolism and regulatory pathways in health and disease.
Collapse
Affiliation(s)
- Matthew Savoca
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenji Takemoto
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jiangting Hu
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - B Jacob Kendrick
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Sink WJ, Fling R, Yilmaz A, Nault R, Goniwiecha D, Harkema JR, Graham SF, Zacharewski T. 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) elicited dose-dependent shifts in the murine urinary metabolome associated with hepatic AHR-mediated differential gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619714. [PMID: 39484576 PMCID: PMC11526911 DOI: 10.1101/2024.10.22.619714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Epidemiological evidence suggests an association between dioxin and dioxin-like compound (DLC) exposure and human liver disease. The prototypical DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been shown to induce the progression of reversible hepatic steatosis to steatohepatitis with periportal fibrosis and biliary hyperplasia in mice. Although the effects of TCDD toxicity are mediated by aryl hydrocarbon receptor (AHR) activation, the underlying mechanisms of TCDD-induced hepatotoxicity are unresolved. In the present study, male C57BL/6NCrl mice were gavaged every 4 days for 28 days with 0.03 - 30 μg/kg TCDD and evaluated for liver histopathology and gene expression as well as complementary 1-dimensional proton magnetic resonance (1D- 1H NMR) urinary metabolic profiling. Urinary trimethylamine (TMA), trimethylamine N-oxide (TMAO), and 1-methylnicotinamide (1MN) levels were altered by TCDD at doses ≤ 3 μg/kg; other urinary metabolites, like glycolate, urocanate, and 3-hydroxyisovalerate, were only altered at doses that induced moderate to severe steatohepatitis. Bulk liver RNA-seq data suggested altered urinary metabolites correlated with hepatic differential gene expression corresponding to specific metabolic pathways. In addition to evaluating whether altered urinary metabolites were liver-dependent, published single-nuclear RNA-seq (snRNA-seq), AHR ChIP-seq, and AHR knockout gene expression datasets provide further support for hepatic cell-type and AHR-regulated dependency, respectively. Overall, TCDD-induced liver effects were preceded by and occurred with changes in urinary metabolite levels due to AHR-mediated changes in hepatic gene expression.
Collapse
Affiliation(s)
- Warren J Sink
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Russell Fling
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Ali Yilmaz
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
| | - Rance Nault
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824, USA
| | - Delanie Goniwiecha
- Middlebury College, Neuroscience Faculty, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - Jack R Harkema
- Michigan State University, Pathobiology & Diagnostic Investigation, East Lansing, MI, United States of America
| | - Stewart F Graham
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Timothy Zacharewski
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Meier MJ, Harrill J, Johnson K, Thomas RS, Tong W, Rager JE, Yauk CL. Progress in toxicogenomics to protect human health. Nat Rev Genet 2024:10.1038/s41576-024-00767-1. [PMID: 39223311 DOI: 10.1038/s41576-024-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose-response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Kamin Johnson
- Predictive Safety Center, Corteva Agriscience, Indianapolis, IN, USA
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Filipovic D, Kana O, Marri D, Bhattacharya S. Unique challenges and best practices for single cell transcriptomic analysis in toxicology. CURRENT OPINION IN TOXICOLOGY 2024; 38:100475. [PMID: 38645720 PMCID: PMC11027889 DOI: 10.1016/j.cotox.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The application and analysis of single-cell transcriptomics in toxicology presents unique challenges. These include identifying cell sub-populations sensitive to perturbation; interpreting dynamic shifts in cell type proportions in response to chemical exposures; and performing differential expression analysis in dose-response studies spanning multiple treatment conditions. This review examines these challenges while presenting best practices for critical single cell analysis tasks. This covers areas such as cell type identification; analysis of differential cell type abundance; differential gene expression; and cellular trajectories. Towards enhancing the use of single-cell transcriptomics in toxicology, this review aims to address key challenges in this field and offer practical analytical solutions. Overall, applying appropriate bioinformatic techniques to single-cell transcriptomic data can yield valuable insights into cellular responses to toxic exposures.
Collapse
Affiliation(s)
- David Filipovic
- Institute for Quantitative Health Science & Engineering, East Lansing, MI, 48824, USA
| | - Omar Kana
- Institute for Quantitative Health Science & Engineering, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel Marri
- Institute for Quantitative Health Science & Engineering, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science & Engineering, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Zhou Y, Zhao Y, Carbonaro M, Chen H, Germino M, Adler C, Ni M, Zhu YO, Kim SY, Altarejos J, Li Z, Burczynski ME, Glass DJ, Sleeman MW, Lee AH, Halasz G, Cheng X. Perturbed liver gene zonation in a mouse model of non-alcoholic steatohepatitis. Metabolism 2024; 154:155830. [PMID: 38428673 DOI: 10.1016/j.metabol.2024.155830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver zonation characterizes the separation of metabolic pathways along the lobules and is required for optimal hepatic function. Wnt signaling is a master regulator of spatial liver zonation. A perivenous-periportal Wnt activity gradient orchestrates metabolic zonation by activating gene expression in perivenous hepatocytes, while suppressing gene expression in their periportal counterparts. However, the understanding as to the liver gene zonation and zonation regulators in diseases is limited. Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fat accumulation, inflammation, and fibrosis. Here, we investigated the perturbation of liver gene zonation in a mouse NASH model by combining spatial transcriptomics, bulk RNAseq and in situ hybridization. Wnt-target genes represented a major subset of genes showing altered spatial expression in the NASH liver. The altered Wnt-target gene expression levels and zonation spatial patterns were in line with the up regulation of Wnt regulators and the augmentation of Wnt signaling. Particularly, we found that the Wnt activator Rspo3 expression was restricted to the perivenous zone in control liver but expanded to the periportal zone in NASH liver. AAV8-mediated RSPO3 overexpression in controls resulted in zonation changes, and further amplified the disturbed zonation of Wnt-target genes in NASH, similarly Rspo3 knockdown in Rspo3+/- mice resulted in zonation changes of Wnt-target genes in both chow and HFD mouse. Interestingly, there were no impacts on steatosis, inflammation, or fibrosis NASH pathology from RSPO3 overexpression nor Rspo3 knockdown. In summary, our study demonstrated the alteration of Wnt signaling in a mouse NASH model, leading to perturbed liver zonation.
Collapse
Affiliation(s)
- Ye Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuanqi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Marisa Carbonaro
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Helen Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mary Germino
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Christina Adler
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuan O Zhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Sun Y Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Judith Altarejos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Zhe Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | | | - David J Glass
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mark W Sleeman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America.
| |
Collapse
|
6
|
Fujiwara N, Kimura G, Nakagawa H. Emerging Roles of Spatial Transcriptomics in Liver Research. Semin Liver Dis 2024; 44:115-132. [PMID: 38574750 DOI: 10.1055/a-2299-7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Spatial transcriptomics, leveraging sequencing- and imaging-based techniques, has emerged as a groundbreaking technology for mapping gene expression within the complex architectures of tissues. This approach provides an in-depth understanding of cellular and molecular dynamics across various states of healthy and diseased livers. Through the integration of sophisticated bioinformatics strategies, it enables detailed exploration of cellular heterogeneity, transitions in cell states, and intricate cell-cell interactions with remarkable precision. In liver research, spatial transcriptomics has been particularly revelatory, identifying distinct zonated functions of hepatocytes that are crucial for understanding the metabolic and detoxification processes of the liver. Moreover, this technology has unveiled new insights into the pathogenesis of liver diseases, such as the role of lipid-associated macrophages in steatosis and endothelial cell signals in liver regeneration and repair. In the domain of liver cancer, spatial transcriptomics has proven instrumental in delineating intratumor heterogeneity, identifying supportive microenvironmental niches and revealing the complex interplay between tumor cells and the immune system as well as susceptibility to immune checkpoint inhibitors. In conclusion, spatial transcriptomics represents a significant advance in hepatology, promising to enhance our understanding and treatment of liver diseases.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Genki Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
7
|
Sadeghirad H, Yaghoubi Naei V, O'Byrne K, Warkiani ME, Kulasinghe A. In situ characterization of the tumor microenvironment. Curr Opin Biotechnol 2024; 86:103083. [PMID: 38382325 DOI: 10.1016/j.copbio.2024.103083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The development of new therapies for cancer is underpinned by an increasing need to comprehensively characterize the tumor microenvironment (TME). While traditional approaches have relied on bulk or single-cell approaches, these are limited in their ability to provide cellular context. Deconvolution of the complex TME is fundamental to understanding tumor dynamics and treatment resistance. Spatially resolved characterization of the TME is likely to provide greater insights into the cellular architecture, tumor-immune cell interactions, receptor-ligand interactions, and cell niches. In turn, these aid in dictating the optimal way in which to target each patient's individual cancer. In this review, we discuss a number of cutting-edge in situ spatial profiling methods giving us new insights into tumor biology.
Collapse
Affiliation(s)
- Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Vahid Yaghoubi Naei
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Engineering, University of Technology Sydney, NSW, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, NSW, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Petrenko O, Königshofer P, Brusilovskaya K, Hofer BS, Bareiner K, Simbrunner B, Jühling F, Baumert TF, Lupberger J, Trauner M, Kauschke SG, Pfisterer L, Simon E, Rendeiro AF, de Rooij LP, Schwabl P, Reiberger T. Transcriptomic signatures of progressive and regressive liver fibrosis and portal hypertension. iScience 2024; 27:109301. [PMID: 38469563 PMCID: PMC10926212 DOI: 10.1016/j.isci.2024.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Persistent liver injury triggers a fibrogenic program that causes pathologic remodeling of the hepatic microenvironment (i.e., liver fibrosis) and portal hypertension. The dynamics of gene regulation during liver disease progression and early regression remain understudied. Here, we generated hepatic transcriptome profiles in two well-established liver disease models at peak fibrosis and during spontaneous regression after the removal of the inducing agents. We linked the dynamics of key disease readouts, such as portal pressure, collagen area, and transaminase levels, to differentially expressed genes, enabling the identification of transcriptomic signatures of progressive vs. regressive liver fibrosis and portal hypertension. These candidate biomarkers (e.g., Tcf4, Mmp7, Trem2, Spp1, Scube1, Islr) were validated in RNA sequencing datasets of patients with cirrhosis and portal hypertension, and those cured from hepatitis C infection. Finally, deconvolution identified major cell types and suggested an association of macrophage and portal hepatocyte signatures with portal hypertension and fibrosis area.
Collapse
Affiliation(s)
- Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Benedikt S. Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Katharina Bareiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan G. Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Larissa Pfisterer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Eric Simon
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Laura P.M.H. de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
9
|
Rance N. How single-cell transcriptomics provides insight on hepatic responses to TCDD. CURRENT OPINION IN TOXICOLOGY 2023; 36:100441. [PMID: 37981901 PMCID: PMC10653208 DOI: 10.1016/j.cotox.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The prototypical aryl hydrocarbon receptor (AHR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been a valuable model for investigating toxicant-associated fatty liver disease (TAFLD). TCDD induces dose-dependent hepatic lipid accumulation, followed by the development of inflammatory foci and eventual progression to fibrosis in mice. Previously, bulk approaches and in vitro examination of different cell types were relied upon to study the mechanisms underlying TCDD-induced liver pathologies. However, the advent of single-cell transcriptomic technologies, such as single-nuclei RNA sequencing (snRNAseq) and spatial transcriptomics (STx), has provided new insights into the responses of hepatic cell types to TCDD exposure. This review explores the application of these single-cell transcriptomic technologies and highlights their contributions towards unraveling the cell-specific mechanisms mediating the hepatic responses to TCDD.
Collapse
Affiliation(s)
- Nault Rance
- Institute for Integrative Toxicology, Michigan State University, Michigan, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, Michigan, USA
| |
Collapse
|
10
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Perdew GH, Esser C, Snyder M, Sherr DH, van den Bogaard EH, McGovern K, Fernández-Salguero PM, Coumoul X, Patterson AD. The Ah Receptor from Toxicity to Therapeutics: Report from the 5th AHR Meeting at Penn State University, USA, June 2022. Int J Mol Sci 2023; 24:5550. [PMID: 36982624 PMCID: PMC10058801 DOI: 10.3390/ijms24065550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.
Collapse
Affiliation(s)
- Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Megan Snyder
- Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street, Boston, MA 02118, USA
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street, Boston, MA 02118, USA
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Karen McGovern
- Ikena Oncology, Inc., 645 Summer Street Suite 101, Boston, MA 02210, USA
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Xavier Coumoul
- INSERM UMR-S1124, 45 rue des Saints-Peères, 75006 Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| |
Collapse
|