1
|
Li LF, Yu J, Li R, Li SS, Huang JY, Wang MD, Jiang LN, Xu JH, Wang Z. Apoptosis, Mitochondrial Autophagy, Fission, and Fusion Maintain Mitochondrial Homeostasis in Mouse Liver Under Tail Suspension Conditions. Int J Mol Sci 2024; 25:11196. [PMID: 39456978 PMCID: PMC11508632 DOI: 10.3390/ijms252011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microgravity can induce alterations in liver morphology, structure, and function, with mitochondria playing an important role in these changes. Tail suspension (TS) is a well-established model for simulating the effects of microgravity on muscles and bones, but its impact on liver function remains unclear. In the current study, we explored the regulatory mechanisms of apoptosis, autophagy, fission, and fusion in maintaining liver mitochondrial homeostasis in mice subjected to TS for 2 or 4 weeks (TS2 and TS4). The results showed the following: (1) No significant differences were observed in nuclear ultrastructure or DNA fragmentation between the control and TS-treated groups. (2) No significant differences were detected in the mitochondrial area ratio among the three groups. (3) Cysteine aspartic acid-specific protease 3 (Caspase3) activity and the Bcl-2-associated X protein (bax)/B-cell lymphoma-2 (bcl2) ratio were not higher in the TS2 and TS4 groups compared to the control group. (4) dynamin-related protein 1 (DRP1) protein expression was increased, while mitochondrial fission factor (MFF) protein levels were decreased in the TS2 and TS4 groups compared to the control, suggesting stable mitochondrial fission. (5) No significant differences were observed in the optic atrophy 1 (OPA1), mitofusin 1 and 2 (MFN1 and MFN2) protein expression levels across the three groups. (6) Mitochondrial autophagy vesicles were present in the TS2 and TS4 groups, with a significant increase in Parkin phosphorylation corresponding to the duration of the TS treatment. (7) ATP synthase and citrate synthase activities were significantly elevated in the TS2 group compared to the control group but were significantly reduced in the TS4 group compared to the TS2 group. In summary, the coordinated regulation of apoptosis, mitochondrial fission and fusion, and particularly mitochondrial autophagy preserved mitochondrial morphology and contributed to the restoration of the activities of these two key mitochondrial enzymes, thereby maintaining liver mitochondrial homeostasis in mice under TS conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Hui Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| | - Zhe Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| |
Collapse
|
2
|
Riegler T, Nejabat M, Eichner J, Stiebellehner M, Subosits S, Bilban M, Zell A, Huber WW, Schulte-Hermann R, Grasl-Kraupp B. Proinflammatory mesenchymal effects of the non-genotoxic hepatocarcinogen phenobarbital: a novel mechanism of antiapoptosis and tumor promotion. Carcinogenesis 2015; 36:1521-30. [PMID: 26378027 DOI: 10.1093/carcin/bgv135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023] Open
Abstract
Many environmental pollutants and drugs, including steroid hormones, hypolipidemics and antiepileptics, are non-genotoxic carcinogens (NGC) in rodent liver. The mechanism of action and the risk for human health are still insufficiently known. Here, we study the effects of phenobarbital (PB), a widely used model NGC, on hepatic epithelial-mesenchymal crosstalk and the impact on hepatic apoptosis. Mesenchymal cells (MC) and hepatocytes (HC) were isolated from control and PB-treated rat livers. PB induced extensive changes in gene expression in MC and much less in HC as shown by transcriptomics with oligoarrays. In MC only, transcript levels of numerous proinflammatory cytokines were elevated. Correspondingly, ELISA on the supernatant of MC from PB-treated rats revealed enhanced release of various cytokines. In cultured HC, this supernatant caused (i) nuclear translocation and activation of nuclear factor-κB (shown by immunoblots of nuclear extracts and reporter gene assays), (ii) elevated expression of proinflammatory genes and (iii) protection from the proapoptotic action of transforming growth factor beta 1 (TGFß1). PB treatment in vivo or in vitro elevated the production and release of tumor necrosis factor alpha from MC, which was identified as mainly responsible for the inhibition of apoptosis in HC. In conclusion, our findings reveal profound proinflammatory effects of PB on hepatic mesenchyme and mesenchymal-epithelial interactions. The resulting release of cytokines acts antiapoptotic in HC, an effect crucial for tumor promotion and carcinogenesis by NGC.
Collapse
Affiliation(s)
| | | | - Johannes Eichner
- Center of Bioinformatics Tübingen (ZBIT), University of Tübingen, 72070 Tübingen, Germany and
| | | | | | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Zell
- Center of Bioinformatics Tübingen (ZBIT), University of Tübingen, 72070 Tübingen, Germany and
| | | | | | | |
Collapse
|
3
|
Apoptosis, proliferation, and cell size in seasonal changes of body and organ weight in male bank voles Myodes glareolus. MAMMAL RES 2015. [DOI: 10.1007/s13364-015-0224-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
LeBaron MJ, Rasoulpour RJ, Gollapudi BB, Sura R, Kan HL, Schisler MR, Pottenger LH, Papineni S, Eisenbrandt DL. Characterization of Nuclear Receptor-Mediated Murine Hepatocarcinogenesis of the Herbicide Pronamide and Its Human Relevance. Toxicol Sci 2014; 142:74-92. [DOI: 10.1093/toxsci/kfu155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Mobasher MA, Valverde ÁM. Signalling pathways involved in paracetamol-induced hepatotoxicity: new insights on the role of protein tyrosine phosphatase 1B. Arch Physiol Biochem 2014; 120:51-63. [PMID: 24738658 DOI: 10.3109/13813455.2014.893365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute hepatic failure secondary to paracetamol poisoning is associated with high mortality. Paracetamol-induced hepatotoxicity causes oxidative stress that triggers signalling pathways and ultimately leads to lethal hepatocyte injury. We will review the signalling pathways activated by paracetamol in the liver emphasizing the role of protein tyrosine phosphatase 1B (PTP1B) in the balance between cell death and survival in hepatocytes. PTP1B has emerged as a key modulator of the antioxidant system mediated by the nuclear factor erythroid-2-related factor 2 (Nrf2) in hepatic cells in response to paracetamol overdose. Also, this phosphatase modulates the classical survival pathways triggered by the activation of the insulin-like growth factor-I (IGF-I) signalling cascade. Therefore, PTP1B is a novel therapeutic target against paracetamol-induced liver failure.
Collapse
Affiliation(s)
- Maysa Ahmed Mobasher
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , ISCIII , Spain
| | | |
Collapse
|
6
|
Elcombe CR, Peffer RC, Wolf DC, Bailey J, Bars R, Bell D, Cattley RC, Ferguson SS, Geter D, Goetz A, Goodman JI, Hester S, Jacobs A, Omiecinski CJ, Schoeny R, Xie W, Lake BG. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol 2013; 44:64-82. [PMID: 24180433 DOI: 10.3109/10408444.2013.835786] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk.
Collapse
|
7
|
Lake BG. Species differences in the hepatic effects of inducers of CYP2B and CYP4A subfamily forms: relationship to rodent liver tumour formation. Xenobiotica 2009; 39:582-96. [DOI: 10.1080/00498250903098184] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Sirotkin AV, Chrenková M, Nitrayová S, Patraš P. Restricted food intake promotes accumulation of proliferation-, apoptosis-, and anti–apoptotic-related peptides in rat testicular cells. Nutr Res 2007. [DOI: 10.1016/j.nutres.2007.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
González-Rodriguez A, Escribano O, Alba J, Rondinone CM, Benito M, Valverde AM. Levels of protein tyrosine phosphatase 1B determine susceptibility to apoptosis in serum-deprived hepatocytes. J Cell Physiol 2007; 212:76-88. [PMID: 17323378 DOI: 10.1002/jcp.21004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of tyrosine kinase growth factor signaling. To assess the importance of PTP1B in the balance between death and survival in the liver, we have developed immortalized neonatal hepatocyte cell lines lacking (PTP1B(-/-)) or overexpressing (PTP1B(+/+PTP1B)) PTP1B. Early activation of caspase-3 occurred in PTP1B(+/+PTP1B) hepatocytes but was nearly abolished in PTP1B(-/-) cells. At the molecular level, PTP1B overexpression/deficiency altered the balance of pro-(Bim) and anti-(Bcl-x(L)) apoptotic members of the Bcl-2 family upon serum withdrawal. Likewise, cytosolic cytochrome C increased rapidly in PTP1B(+/+PTP1B) hepatocytes whereas it was retained in the mitochondria of PTP1B(-/-) cells. DNA fragmentation and the increase of apoptotic cells induced by serum withdrawal in wild-type (PTP1B(+/+)) hepatocytes were absent in PTP1B(-/-) cells. Conversely, overexpression of PTP1B accelerated DNA laddering and increased the number of apoptotic cells. In serum-deprived PTP1B(+/+PTP1B) hepatocytes, a rapid entry of Foxo1 into the nucleus and an earlier activation of caspase-8 was observed. However, both events were suppressed in PTP1B(-/-) hepatocytes. Moreover, PTP1B deficiency conferred resistance to apoptosis induced by activation of Fas and constitutively active Foxo1. Rescue of PTP 1B in deficient hepatocytes recovered the phenotype of wild-type cells whereas reduction of PTP1B by siRNA suppressed apoptosis. Our results reveal a unique role for PTP1B as a mediator of the apoptotic pathways triggered by trophic factors withdrawal in hepatocytes. This novel mechanism may represent an important target in the design of therapeutic strategies for human liver regeneration after pathological damage as well as for treatment of hepatocarcinomas.
Collapse
Affiliation(s)
- Agueda González-Rodriguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC/UAM), C/Arturo Pérez Duperier 4, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Moto M, Okamura M, Muguruma M, Ito T, Jin M, Kashida Y, Mitsumori K. Gene expression analysis on the dicyclanil-induced hepatocellular tumors in mice. Toxicol Pathol 2007; 34:744-51. [PMID: 17162532 DOI: 10.1080/01926230600932471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our previous studies showed the possibility that oxidative stress, including oxidative DNA damage, is involved in the mechanism of dicyclanil (DC)-induced hepatocarcinogenesis at the preneoplastic stage in mice. In this study, the expression analyses of genes, including oxidative stress-related genes, were performed on the tissues of hepatocellular tumors in a two-stage liver carcinogenesis model in mice. After partial hepatectomy, male ICR mice were injected with N-diethylnitrosamine (DEN) and given a diet containing 0 or 1500 ppm of DC for 20 weeks. Histopathological examinations revealed that the incidence of hepatocellular tumors (adenomas and carcinomas) significantly increased in the DEN + DC group. Gene expression analysis on the microdissected liver tissues of the mice in the DEN + DC group showed the highest expression levels of oxidative stress-related genes, such as Cyp1a1 and Txnrd1, in the tumor areas. However, no remarkable up-regulation of Ogg1-an oxidative DNA damage repair gene-was observed in the tumor areas, but the expression of Trail-an apoptosis-signaling ligand gene-was significantly down-regulated in the tumor tissues. These results suggest the possibility that the inhibition of apoptosis and a failure in the ability to repair oxidative DNA damage occur in the hepatocellular DC-induced tumors in mice.
Collapse
Affiliation(s)
- Mitsuyoshi Moto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|