1
|
Gregory M, Cyr DG. Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod 2020; 100:123-132. [PMID: 30060123 DOI: 10.1093/biolre/ioy171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions are responsible for intercellular communication. In the adult mammalian epididymis, gap junction protein alpha 1 (GJA1) is localized between basal and either principal or clear cells. GJA1 levels and localization change during the differentiation of basal cells. The present objective was to determine the role of basal cells and prostaglandin E2 (PGE2) on GJA1 in the rat epididymis. Prior to basal cell differentiation, GJA1 is colocalized with TJP1 at the apical lateral margins between adjacent epithelial cells. When basal cells are present, GJA1 becomes associated between basal and principal cells, where it is primarily immunolocalized until adulthood. Basal cells express TP63, differentiate from epithelial cells, and produce prostaglandin-endoperoxide synthase 1 by 21 days of age. Prior to day 21, GJA1and TP63 are not strongly associated at the apical region. However, by day 28, TP63-positive basal cells migrate to the base of the epithelium, and also express GJA1. To assess effects of PGE2 on GJA1, rat caput epididymal (RCE) cells were exposed to PGE2 (50 μM) for 3 h. PGE2 increased levels of Gja1 mRNA in RCE cells, while levels of Gjb1, Gjb2, Gjb4, and GjB5 were unaltered. Furthermore, PGE2 increased protein levels of GJA1, phospho-GJA1, phospho-AKT, CTNNB1, and phospho-CTNNB1. Total AKT and the tight junction protein claudin1 were also not altered by PGE2. Data suggest that development of the epididymal epithelium and differentiation of epididymal basal cells regulate the targeting of GJA1, and that this appears to be mediated by PGE2.
Collapse
Affiliation(s)
- Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| |
Collapse
|
2
|
Gouesse RJ, Lavoie M, Dianati E, Wade MG, Hales BF, Robaire B, Plante I. Gestational and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Downregulates Junctional Proteins, Thyroid Hormone Receptor α1 Expression, and the Proliferation-Apoptosis Balance in Mammary Glands Post Puberty. Toxicol Sci 2019; 171:13-31. [PMID: 31241157 PMCID: PMC6735962 DOI: 10.1093/toxsci/kfz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Mammary gland development requires hormonal regulation during puberty, pregnancy, and lactation. Brominated flame retardants (BFRs) are endocrine disruptors; they are added to consumer products to satisfy flammability standards. Previously, we showed that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts proteins of the adherens junctions in rat dam mammary glands at weaning. Here, we hypothesize that perinatal exposure to the same BFR mixture also disrupts junctional proteins and signaling pathways controlling mammary gland development in pups. Dams were exposed through diet to a BFR mixture based on the substances in house dust; doses of the mixture used were 0, 0.06, 20, or 60 mg/kg/day. Dams were exposed continuously beginning prior to mating until pups' weaning; female offspring were euthanized on postnatal day (PND) 21, 46, and 208. The lowest dose of BFRs significantly downregulated adherens junction proteins, E-cadherin, and β-catenin, and the gap junction protein p-Cx43, as well as thyroid hormone receptor alpha 1 protein at PND 46. No effects were observed on estrogen or progesterone receptors. The low dose also resulted in a decrease in cleaved caspase-3, a downward trend in PARP levels, proteins involved in apoptosis, and an upward trend in proliferating cell nuclear antigen, a marker of proliferation. No effects were observed on ductal elongation or on the numbers of terminal end buds. Together, our results indicate that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts cell-cell interactions, thyroid hormone homeostasis and the proliferation-apoptosis balance at PND 46, a critical stage for mammary gland development.
Collapse
Affiliation(s)
| | - Mélanie Lavoie
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Elham Dianati
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Mike G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario, Canada
| | | | - Bernard Robaire
- Department of Pharmacology & Therapeutics
- Department of Obstetrics & Gynecology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabelle Plante
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| |
Collapse
|
3
|
Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol 2016; 416:52-68. [PMID: 27291930 DOI: 10.1016/j.ydbio.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/15/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.
Collapse
|
4
|
Delisle A, Ferraris E, Plante I. Chronic exposure to hexachlorobenzene results in down-regulation of connexin43 in the breast. ENVIRONMENTAL RESEARCH 2015; 143:229-240. [PMID: 26519829 DOI: 10.1016/j.envres.2015.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Decreased expression of connexins has been associated with cancer, but the underlying mechanisms are poorly understood. We have previously shown that a 5 day exposure to hexachlorobenzene (HCB) resulted in decreased connexins expression in hepatocytes 45 days later, and that this down-regulation was linked to activation of Akt through the ILK pathway. Because HCB promotes cancer in both the liver and breast, the present study aimed to determine if the mechanisms are similar in both tissues. MCF-12A breast cells were thus transfected with vectors coding for either Akt or a constitutively active form of Akt. In those cells, activation of Akt was correlated with decreased Cx43 levels. Female rats were then exposed to HCB by gavage either following the same protocol used previously for the liver or through a chronic exposure. While no changes were observed after the 5 days exposure protocol, chronic exposure to HCB resulted in increased Akt levels and decreased Cx43 levels in breast cells. In vitro, Akt was activated in MCF-12A cells exposed to HCB either for 7 days or chronically, but no changes were observed in junctional proteins. Together, these results suggested that, while activation of Akt can decrease Cx43 expression in breast cells in vitro, other mechanisms are involved during HCB exposure, leading to a decrease in Cx43 levels in a model- and duration-dependent manner. Finally, we showed that HCB effects are tissue specific, as we did not observe the same results in breast and liver tissues.
Collapse
Affiliation(s)
- Ariane Delisle
- INRS-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7
| | | | - Isabelle Plante
- INRS-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7. http://www.inrs.ca
| |
Collapse
|
5
|
Arstikaitis J, Gagné F, Cyr DG. Exposure of fathead minnows to municipal wastewater effluent affects intracellular signaling pathways in the liver. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:1-10. [PMID: 24747326 DOI: 10.1016/j.cbpc.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022]
Abstract
Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15k gene sequences. A total of 1300 genes were differentially expressed, of which 309 genes had more than 2-fold change in expression level between control and MWWE-exposed fish. Of those, 118 were up-regulated and 191 were down-regulated. Altered genes grouped according to function, indicated effects on various signaling pathways, apoptosis, immune responses, and cellular metabolism. Pathway analysis software predicted at least 5 signaling pathways that were altered by treatment: cell adhesion, inflammation, various kinases, estrogen receptor signaling and WNT signaling. Various components of the canonical Wnt pathway were dramatically down-regulated, while several other genes involved in the non-canonical Wnt pathway, such as Wnt4, LRP6, and PPP2R5E, which are known to inhibit the canonical Wnt pathway, were increased. These results indicate that municipal wastewater effluent from Montreal can target and inhibit various signaling including those implicated in hepatic Wnt signaling pathway in fathead minnows.
Collapse
Affiliation(s)
- Jennifer Arstikaitis
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada
| | - François Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada; Centre Saint-Laurent, Environment Canada, Montreal, Québec H2Y 2E7, Canada
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada.
| |
Collapse
|
6
|
Pontillo CA, García MA, Peña D, Cocca C, Chiappini F, Alvarez L, Kleiman de Pisarev D, Randi AS. Activation of c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration by hexachlorobenzene in MDA-MB-231 human breast cancer cell line. Toxicol Sci 2010; 120:284-96. [PMID: 21205633 DOI: 10.1093/toxsci/kfq390] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hexachlorobenzene (HCB) is a widespread environmental pollutant. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR) protein. HCB is a tumor cocarcinogen in rat mammary gland and an inducer of cell proliferation and c-Src kinase activity in MCF-7 breast cancer cells. This study was carried out to investigate HCB action on c-Src and the human epidermal growth factor receptor (HER1) activities and their downstream signaling pathways, Akt, extracellular-signal-regulated kinase (ERK1/2), and signal transducers and activators of transcription (STAT) 5b, as well as on cell migration in a human breast cancer cell line, MDA-MB-231. We also investigated whether the AhR is involved in HCB-induced effects. We have demonstrated that HCB (0.05μM) produces an early increase of Y416-c-Src, Y845-HER1, Y699-STAT5b, and ERK1/2 phosphorylation. Moreover, our results have shown that the pesticide (15 min) activates these pathways in a dose-dependent manner (0.005, 0.05, 0.5, and 5μM). In contrast, HCB does not alter T308-Akt activation. Pretreatment with a specific inhibitor for c-Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine [PP2]) prevents Y845-HER1 and Y699-STAT5b phosphorylation. AG1478, a specific HER1 inhibitor, abrogates HCB-induced STAT5b and ERK1/2 activation, whereas 4,7-orthophenanthroline and α-naphthoflavone, two AhR antagonists, prevent HCB-induced STAT5b and ERK1/2 phosphorylation. HCB enhances cell migration evaluated by scratch motility and transwell assays. Pretreatment with PP2, AG1478, and 4,7-orthophenanthroline suppresses HCB-induced cell migration. These results demonstrate that HCB stimulates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways in MDA-MB-231. c-Src, HER1, and AhR are involved in HCB-induced increase in cell migration. The present study makes a significant contribution to the molecular mechanism of action of HCB in mammary carcinogenesis.
Collapse
Affiliation(s)
- Carolina A Pontillo
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ikegami T, Zhang Y, Matsuzaki Y. Liver fibrosis: possible involvement of EMT. Cells Tissues Organs 2007; 185:213-21. [PMID: 17587827 DOI: 10.1159/000101322] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is a wound-healing process in the liver with acute and chronic injury and is characterized by an excess production and deposition of extracellular matrix components. Hepatic stellate cells as well as portal fibroblasts play a pivotal role in the liver fibrogenesis. Regarding the origin of these mesenchymal cells, two hypotheses emerge. One hypothesis argues in favor of BM-derived progenitor cells and a second hypothesis favors epithelial-mesenchymal transition (EMT) in the local formation of these mesenchymal cells from hepatic epithelium. In this short review, we describe (1) the principle mechanisms of hepatic fibrosis, (2) the cells which play a crucial role in hepatic fibrosis, and (3) the possible involvement of EMT in the process of hepatic fibrosis and carcinogenesis.
Collapse
Affiliation(s)
- Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University, Kasumigaura Hospital, Inashiki-gun, Japan.
| | | | | |
Collapse
|