1
|
Feng S, Li T, Wei X, Zheng Y, Zhang Y, Li G, Zhao Y. The Antioxidant and Anti-Fatigue Effects of Rare Ginsenosides and γ-Aminobutyric Acid in Fermented Ginseng and Germinated Brown Rice Puree. Int J Mol Sci 2024; 25:10359. [PMID: 39408689 PMCID: PMC11476846 DOI: 10.3390/ijms251910359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
γ-aminobutyric acid (GABA) and rare ginsenosides are good antioxidant and anti-fatigue active components that can be enriched via probiotic fermentation. In this study, ginseng and germinated brown rice were used as raw materials to produce six fermented purees using fermentation and non-fermentation technology. We tested the chemical composition of the purees and found that the content of GABA and rare ginsenoside (Rh4, Rg3, and CK) in the puree made of ginseng and germinated brown rice (FGB) increased significantly after fermentation. The antioxidant activity of the six purees was determined using cell-free experiments, and it was found that FGB had better ferric-ion-reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging rates, exhibiting better antioxidant effects. We then evaluated the antioxidant effect of FGB in HepG2 cells induced by H2O2 and found that FGB can reduce the generation of reactive oxygen species (ROS) in HepG2 cells and increase the membrane potential level, thereby improving oxidative damage in these cells. In vivo experiments also showed that FGB has good antioxidant and anti-fatigue activities, which can prolong the exhaustive swimming time of mice and reduce the accumulation of metabolites, and is accompanied by a corresponding increase in liver glycogen and muscle glycogen levels as well as superoxide dismutase and lactate dehydrogenase activities. Finally, we believe that the substances with good antioxidant and anti-fatigue activity found in FGB are derived from co-fermented enriched GABA and rare ginsenosides.
Collapse
Affiliation(s)
- Shiwen Feng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Xinrui Wei
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| | - Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Yumeng Zhang
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| |
Collapse
|
2
|
Park JD. Metabolism and drug interactions of Korean ginseng based on the pharmacokinetic properties of ginsenosides: Current status and future perspectives. J Ginseng Res 2024; 48:253-265. [PMID: 38707645 PMCID: PMC11068998 DOI: 10.1016/j.jgr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/07/2024] Open
Abstract
Orally administered ginsenosides, the major active components of ginseng, have been shown to be biotransformed into a number of metabolites by gastric juice, digestive and bacterial enzymes in the gastrointestinal tract and also in the liver. Attention is brought to pharmacokinetic studies of ginseng that need further clarification to better understand the safety and possible active mechanism for clinical application. Experimental results demonstrated that ginsenoside metabolites play an important role in the pharmacokinetic properties such as drug metabolizing enzymes and drug transporters, thereby can be applied as a metabolic modulator. Very few are known on the possibility of the consistency of detected ginsenosides with real active metabolites if taken the recommended dose of ginseng, but they have been found to act on the pharmacokinetic key factors in any clinical trial, affecting oral bioavailability. Since ginseng is increasingly being taken in a manner more often associated with prescription medicines, ginseng and drug interactions have been also reviewed. Considering the extensive oral administration of ginseng, the aim of this review is to provide a comprehensive overview and perspectives of recent studies on the pharmacokinetic properties of ginsenosides such as deglycosylation, absorption, metabolizing enzymes and transporters, together with ginsenoside and drug interactions.
Collapse
Affiliation(s)
- Jong Dae Park
- R&D Center, REBIO Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
3
|
Feng Q, Ling L, Yuan H, Guo Z, Ma J. Ginsenoside Rd: A promising target for ischemia-reperfusion injury therapy (A mini review). Biomed Pharmacother 2024; 171:116111. [PMID: 38181712 DOI: 10.1016/j.biopha.2023.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) represents a prevalent pathological phenomenon. Traditional treatment approaches primarily aim at restoring blood supply to ischemic organs, disregarding the consequent damage caused by IRI. Belonging to the class of protopanaxadiol ginsenosides that are found in Panax ginseng, ginsenoside Rd (GSRd) demonstrates notable safety alongside a diverse range of biological functions. Its active components exhibit diverse pharmacological effects, encompassing anti-inflammatory, anti-tumor, neuroprotective, cardiovascular-protective, and immune-regulatory properties, making it a promising candidate for addressing multiple medical conditions. GSRd shields against I/R injury by employing crucial cellular mechanisms, including the attenuation of oxidative stress, reduction of inflammation, promotion of cell survival signaling pathways, and inhibition of apoptotic pathways. Additionally, GSRd regulates mitochondrial function, maintains calcium homeostasis, and modulates the expression of genes involved in I/R injury. This review seeks to consolidate the pharmacological mechanism of action of GSRd within the context of IRI. Our objective is to contribute to the advancement of GSRd-related pharmaceuticals and provide novel insights for clinicians involved in developing IRI treatment strategies.
Collapse
Affiliation(s)
- Qiupeng Feng
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Lijing Ling
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Hua Yuan
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Zhiqiang Guo
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 566 Qianjin East Road, Kunshan 215300, China.
| |
Collapse
|
4
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Montagnani M, Potenza MA, Corsalini M, Barile G, Charitos IA, De Giacomo A, Jirillo E, Colella M, Santacroce L. Current View on How Human Gut Microbiota Mediate Metabolic and Pharmacological Activity of Panax ginseng. A Scoping Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1756-1773. [PMID: 38504564 DOI: 10.2174/0118715303270923240307120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
Panax ginseng is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, Panax ginseng is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brainand the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of Panax ginseng (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Massimo Corsalini
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Barile
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, Bari, Italy
| | - Andrea De Giacomo
- Department of Neurological and Psychiatric Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Doctoral School, eCampus University, Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Ben-Eltriki M, Shankar G, Tomlinson Guns ES, Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: a drug interaction perspective. Cancer Chemother Pharmacol 2023; 92:419-437. [PMID: 37709921 DOI: 10.1007/s00280-023-04583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC, Canada.
- Community Pharmacist, Vancouver Area, BC, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Gehana Shankar
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
7
|
Wang L, Zhang Y, Song Z, Liu Q, Fan D, Song X. Ginsenosides: a potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct 2023; 14:9137-9166. [PMID: 37801293 DOI: 10.1039/d3fo02482b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.
Collapse
Affiliation(s)
- Lina Wang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Zhimin Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Biotechnology & Biomedicine Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
8
|
Cong Z, Zhang X, Lv Z, Jiang J, Wang L, Li J, Wang J, Zhao J. Transcriptome Analysis of the Inhibitory Effects of 20(S)-Protopanaxadiol on NCI-H1299 Non-Small Cell Lung Cancer Cells. Molecules 2023; 28:5746. [PMID: 37570716 PMCID: PMC10421167 DOI: 10.3390/molecules28155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer seriously threatens human health. To explore the molecular mechanism of 20(S)-Protopanaxadiol (PPD) on human non-small cell lung cancer cells, we investigated the transcriptional profile of PPD-treated NCI-H1299 cells. Cell proliferation, cell cycle, and apoptosis were detected using cell counting kit-8 and flow cytometry, respectively. Differentially expressed genes (DEGs) between PPD-treated and untreated cells were determined using RNA sequencing and bioinformatic analysis. Protein phosphorylation was detected using Western blotting. Data of mRNA expression profiles of lung cancer were from The Cancer Genome Atlas (TCGA) and analyzed using R software version 4.3.1. PPD showed an inhibitory effect on the proliferation of NCI-H1299 cells and induced apoptosis. There were 938 upregulated genes and 466 downregulated genes in PPD-treated cells, and DEGs were primarily enriched in the MAPK signaling pathway. The detection of phosphorylation revealed that the phosphorylation of ERK and p38 MAPK was significantly reduced in PPD-treated cells. Further comparison of PPD-regulated DEGs with clinical data of lung adenocarcinoma demonstrated that most downregulated genes in tumor tissues were upregulated in PPD-treated cells or vice versa. Two PPD-downregulated genes HSPA2 and EFNA2 were associated with patients' overall survival. Therefore, PPD could inhibit NCI-H1299 cells by affecting gene expression and regulating ERK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Xinmin Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Zeqi Lv
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jingyuan Jiang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Lei Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jiapeng Li
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jie Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jianjun Zhao
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Xiantai Street 126, Changchun 130033, China
| |
Collapse
|
9
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Zhao YC, Li LP, Li XY, Wang CC, Yang JY, Xue CH, Wang YM, Zhang TT. The synergistic effect of sea cucumber saponins and caffeine on preventing obesity in high-fat diet-fed mice by extending the action duration of caffeine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3950-3960. [PMID: 36377349 DOI: 10.1002/jsfa.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Sea cucumber saponins (SCSs) exhibit a unique structure and high bioactivities and might have specialized implications on caffeine metabolic process by altering the activity of N-demethylation enzyme CYP1A2. The present study aimed to clarify the effects of SCS on caffeine metabolism in vivo and in vitro, as well as the synergistic anti-obesity effect of SCS and caffeine on high-fat diet-induced obese mice. RESULTS Results found that SCS administration significantly postponed the elimination rate of caffeine and its metabolites in vivo, and further study found CYP1A2-mediated caffeine metabolism was remarkably inhibited in a dose-dependent manner in vitro. The synergistic effect of the SCS and caffeine combination could decrease the total weight of white adipose tissue by 52% compared with high-fat diet-treated group. CONCLUSION SCS could prolong caffeine action time, and the combination of the two substances exhibited joint action on high-fat diet-induced obese mice. These findings might provide a basis for the development of functional foods and potential application using the combination of SCS and caffeine. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Le-Ping Li
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology/ETH Zürich, Zurich, Switzerland
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Lin F, Lin X, Wang X, Mei G, Chen B, Yao H, Huang L. Inhibitory effect of Selaginella doederleinii hieron on human cytochrome P450. Front Pharmacol 2023; 14:1108867. [PMID: 36874034 PMCID: PMC9975586 DOI: 10.3389/fphar.2023.1108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Selaginella doederleinii Hieron is a traditional Chinese herbal medicine, the ethyl acetate extract from Selaginella doederleinii (SDEA) showed favorable anticancer potentials. However, the effect of SDEA on human cytochrome P450 enzymes (CYP450) remains unclear. To predict the herb-drug interaction (HDI) and lay the groundwork for further clinical trials, the inhibitory effect of SDEA and its four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) on seven CYP450 isoforms were investigated by using the established CYP450 cocktail assay based on LC-MS/MS. Methods: Appropriate substrates for seven tested CYP450 isoforms were selected to establish a reliable cocktail CYP450 assay based on LC-MS/MS. The contents of four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) in SDEA were determined as well. Then, the validated CYP450 cocktail assay was applied to test the inhibitory potential of SDEA and four constituents on CYP450 isoforms. Results: SDEA showed strong inhibitory effect on CYP2C9 and CYP2C8 (IC50 ≈ 1 μg/ml), moderate inhibitory effect against CYP2C19, CYP2E1 and CYP3A (IC50 < 10 μg/ml). Among the four constituents, Amentoflavone had the highest content in the extract (13.65%) and strongest inhibitory effect (IC50 < 5 μM), especially for CYP2C9, CYP2C8 and CYP3A. Amentoflavone also showed time-dependent inhibition on CYP2C19 and CYP2D6. Apigenin and Palmatine both showed concentration-dependent inhibition. Apigenin inhibited CYP1A2, CYP2C8, CYP2C9, CYP2E1 and CYP3A. Palmatine inhibited CYP3A and had a weak inhibitory effect on CYP2E1. As for Delicaflavone, which has the potential to develop as an anti-cancer agent, showed no obvious inhibitory effect on CYP450 enzymes. Conclusion: Amentoflavone may be one of the main reasons for the inhibition of SDEA on CYP450 enzymes, the potential HDI should be considered when SDEA or Amentoflavone were used with other clinical drugs. On the contrast, Delicaflavone is more suitable to develop as a drug for clinical use, considering the low level of CYP450 metabolic inhibition.
Collapse
Affiliation(s)
- Fei Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guanghui Mei
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lingyi Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang C, Tan L, Liu J, Fu D, Wang C, Li P, Li Z, Liu J. Integrated Metabolomics and Network Pharmacology to Decipher the Latent Mechanisms of Protopanaxatriol against Acetic Acid-Induced Gastric Ulcer. Int J Mol Sci 2022; 23:ijms232012097. [PMID: 36292949 PMCID: PMC9602736 DOI: 10.3390/ijms232012097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric ulcer (GU) is a peptic disease with high morbidity and mortality rates affecting approximately 4% of the population throughout the world. Current therapies for GU are limited by the high relapse incidence and side effects. Therefore, novel effective antiulcer drugs are urgently needed. Ginsenosides have shown good anti-GU effects, and the major intestinal bacterial metabolite of ginsenosides, protopanaxatriol (PPT), is believed to be the active component. In this study, we evaluated the anti-GU effect of PPT in rats in an acetic acid-induced GU model. High (H-PPT) and medium (M-PPT) doses of PPT (20.0 and 10.0 mg/mg/day) significantly reduced the ulcer area and the ET-1, IL-6, EGF, SOD, MDA and TNF-α levels in serum were regulated by PPT in a dose-dependent manner. We also investigated the mechanisms of anti-GU activity of PPT based on metabolomics coupled with network pharmacology strategy. The result was that 16 biomarkers, 3 targets and 3 metabolomic pathways were identified as playing a vital role in the treatment of GU with PPT and were further validated by molecular docking. In this study, we have demonstrated that the integrated analysis of metabolomics and network pharmacology is an effective strategy for deciphering the complicated mechanisms of natural compounds.
Collapse
Affiliation(s)
- Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongxing Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (J.L.); Tel.: +86-0431-8561-9803 (J.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (J.L.); Tel.: +86-0431-8561-9803 (J.L.)
| |
Collapse
|
14
|
Lee SG, Cho KH, Nguyen TTL, Vo DK, Chae YJ, Maeng HJ. Inhibitory effect of 20(S)-protopanaxadiol on cytochrome P450: Potential of its pharmacokinetic interactions in vivo. Biomed Pharmacother 2022; 153:113514. [DOI: 10.1016/j.biopha.2022.113514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/28/2022] Open
|
15
|
Takeuchi DM, Ozeki Y, Fukami H, Ogawa J, Kishino S. Analysis of Astragaloside IV metabolism to Cycloastragenol in human gut microorganism, bifidobacteria, and lactic acid bacteria. Biosci Biotechnol Biochem 2022; 86:1467-1475. [PMID: 35904311 DOI: 10.1093/bbb/zbac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022]
Abstract
This study investigated different gut bacteria in an anaerobic environment to identify specific candidates that could transform astragaloside IV (AIV) to cycloastragenol (CA). Two representative gut microbes, lactic acid bacteria (LAB) and bifidobacteria, could metabolize AIV to CA. Multiple screenings showed two metabolic pathways to metabolize AIV in two groups of bacteria. LAB metabolized AIV initiated by removing the C-6 glucose, whereas bifidobacteria indicated the initial removal of C-3 xylose. The final products differed between the two groups as bifidobacteria showed the production of CA, whereas LAB demonstrated preferential production of 20R, 24S-epoxy-6α, -16β, -25-trihydroxy-9, -19-cycloartan-3-one (CA-2H).
Collapse
Affiliation(s)
- Daniel M Takeuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuuki Ozeki
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiroyuki Fukami
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Potential food-drug interaction risk of thymoquinone with warfarin. Chem Biol Interact 2022; 365:110070. [DOI: 10.1016/j.cbi.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
|
17
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
18
|
Liu J, Dong Q, Du G, Wang J, An Y, Liu J, Su J, Xie H, Yin J. Identification of metabolites in plasma related to different biological activities of Panax ginseng and American ginseng. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9219. [PMID: 34740284 DOI: 10.1002/rcm.9219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Panax ginseng (PG) and American ginseng (AMG) are both medicinal plants of the Panax genus in the Acanthopanax family. Although PG and AMG have similar components of ginsenosides, there are many differences of their bioactivities. In this study, the biochemical mechanisms of different bioactivities of PG and AMG were explored by researching the differential metabolites in plasma after administration of each of PG and AMG. METHODS In order to explore the material basis of differential bioactivities, two groups of mice were administrated orally with PG and AMG, and the method of metabolomics was used to identify the differential metabolites in plasma. Then network pharmacology was used based on the differential metabolites. Afterward, the metabolite-target-pathway network of PG and AMG was constructed; thus the pathways related to different bioactivities were analyzed. RESULTS Through principal component analysis and orthogonal projections to latent structures discriminant analysis, there were 10 differential metabolites identified in the PG group and 8 differential metabolites identified in the AMG group. Based on network pharmacology, the differential metabolites were classified and related to differential bioactivities of PG and AMG. In the PG group, there were 6 metabolites related to aphrodisiac effect and exciting the nervous system, and 5 metabolites associated with raised blood pressure. In the AMG group, 5 metabolites were classified as having the effect of inhibiting the nervous system, and 6 metabolites were related to antihypertensive effect. CONCLUSIONS This study explored the material basis of the differential biological activities between PG and AMG, which is significant for the research of PG and AMG use and to promote human health.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Hongliu Xie
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jianyuan Yin
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
19
|
Potential herb-drug interaction risk of thymoquinone and phenytoin. Chem Biol Interact 2022; 353:109801. [PMID: 34998822 DOI: 10.1016/j.cbi.2022.109801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Thymoquinone is a main bioactive compound of Nigella sativa L. (N.sativa), which has been used for clinical studies in the treatment of seizures due to its beneficial neuroprotective activity and antiepileptic effects. It has been evidenced that thymoquinone may inhibit the activity of cytochrome P450 2C9 (CYP2C9). However, little is known about the effect of thymoquinone or N.sativa on the pharmacokinetic behavior of phenytoin, a second-line drug widely used in the management of status epilepticus. In this study, we systematically investigated the risk of the potential pharmacokinetic drug interaction between thymoquinone and phenytoin. The inhibitory effect of thymoquinone on phenytoin hydroxylation activity by CYP2C9 was determined using UPLC-MS/MS by measuring the formation rates for p-hydroxyphenytoin (p-HPPH). The potential for drug-interaction between thymoquinone and phenytoin was quantitatively predicted by using in vitro-in vivo extrapolation (IVIVE). Our data demonstrated that thymoquinone displayed effective inhibition against phenytoin hydroxylation activity. Enzyme kinetic studies showed that thymoquinone exerted a competitive inhibition against phenytoin hydroxylation with a Ki value of 4.45 ± 0.51 μM. The quantitative prediction from IVIVE suggested that the co-administration of thymoquinone (>18 mg/day) or thymoquinone-containing herbs (N.sativa > 1 g/day or N.sativa oil >1 g/day) might result in a clinically significant herb-drug interactions. Additional caution should be taken when thymoquinone or thymoquinone-containing herbs are co-administered with phenytoin, which may induce unexpected potential herb-drug interactions via the inhibition of CYP2C9.
Collapse
|
20
|
Ginsenosides Conversion and Anti-Oxidant Activities in Puffed Cultured Roots of Mountain Ginseng. Processes (Basel) 2021. [DOI: 10.3390/pr9122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CRMG (Cultured Roots of Mountain Ginseng) have the advantages in scale-up production, safety, and pharmacological efficacies. Though several methods are available for the conversion of major to minor ginsenosides, which has more pharmacological activities, a single step process with high temperature and pressure as a puffing method took place in this study to gain and produce more pharmacologically active compounds. Puffed CRMG exhibited an acceleration of major ginsenosides to minor ginsenosides conversions, and released more phenolic and flavonoid compounds. HPLC analysis was used to detect a steep decrease in the contents of major ginsenosides (Re, Rf, Rg1, Rg2, Rb1, Rb2, Rb3, Rc and Rd) with increasing pressure; on the contrary, the minor ginsenosides (20 (S, R)-Rg3, Rg5, Rk1, Rh1, Rh2, Rg6, F4 and Rk3) contents increased. Minor ginsenosides, such as Rg6, F4 and Rk3, were firstly reported to be produced from puffed CRMG. After the puffing process, phenolics, flavonoids, and minor ginsenoside contents were increased, and also, the antioxidant properties, such as DPPH inhibition and reducing the power of puffed CRMG, were significantly enhanced. Puffed CRMG at 490.3 kPa and 588.4 kPa had a low toxicity on HaCaT (immortalized human epidermal keratinocyte) cells at 200 μg/mL, and could significantly reduce ROS by an average of 60%, compared to the group treated with H2O2. Therefore, single step puffing of CRMG has the potential to be utilized for functional food and cosmeceuticals.
Collapse
|
21
|
The use of herbal medicines and conventional drugs by individuals with cerebral palsy and the risk of interactions. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Boparai JK, Nancy N, Sharma PK. Molecular Cloning, Functional and Biophysical Characterization of an Antimicrobial Peptide from Rhizosphere Soil. Protein Pept Lett 2021; 28:1312-1322. [PMID: 34477502 DOI: 10.2174/0929866528666210903162137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet the study was further aimed at corroborating structural and functional studies using biophysical tools. BACKGROUND Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and is the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offers best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil. OBJECTIVE Objectives of this study includes construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide towards MRSA strains. METHODS In this study, we used array of molecular biology tools that include genetic engineering, PCR amplification, construction of an expression construct and NI-NTA based purification of the recombinant peptide. We have also carried out antimicrobial activity assay to determine MIC and IC50 values of antimicrobial peptide. To establish structural and functional relationship, circular dichroism, and both extrinsic and intrinsic fluorescence spectroscopy studies were carried out. RESULTS Screening of metagenomic library resulted in identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in broad range of pH and temperature. MIC (minimum inhibitory concentration) determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas in case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8µM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at wide range of temperature and pH. CONCLUSION Altogether, the peptide discovered from rhizosphere metagenome hold potential in inhibiting the growth of both the gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).
Collapse
Affiliation(s)
- Jaspreet Kaur Boparai
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Nancy Nancy
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| |
Collapse
|
23
|
Truong VL, Jun M, Jeong WS. Phytochemical and Over-The-Counter Drug Interactions: Involvement of Phase I and II Drug-Metabolizing Enzymes and Phase III Transporters. J Med Food 2021; 24:786-805. [PMID: 34382862 DOI: 10.1089/jmf.2021.k.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Consumption of plant-derived natural products and over-the-counter (OTC) drugs is increasing on a global scale, and studies of phytochemical-OTC drug interactions are becoming more significant. The intake of dietary plants and herbs rich in phytochemicals may affect drug-metabolizing enzymes (DMEs) and transporters. These effects may lead to alterations in pharmacokinetics and pharmacodynamics of OTC drugs when concomitantly administered. Some phytochemical-drug interactions benefit patients through enhanced efficacy, but many interactions cause adverse effects. This review discusses possible mechanisms of phytochemical-OTC drug interactions mediated by phase I and II DMEs and phase III transporters. In addition, current information is summarized for interactions between phytochemicals derived from fruits, vegetables, and herbs and OTC drugs, and counseling is provided on appropriate and safe use of OTC drugs.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Mira Jun
- Brain Busan 21 Plus Program, Department of Food Science and Nutrition, Graduate School, Center for Silver-Targeted Biomaterials, Dong-A University, Busan, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
24
|
Effect of Single-Dose and Short-Term Administration of Si Jun Zi Tang on the Pharmacokinetics of Gefitinib in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655449. [PMID: 34354759 PMCID: PMC8331296 DOI: 10.1155/2021/6655449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022]
Abstract
Background Si Jun Zi Tang (SJZ), a four-herb Chinese medicine formula that has been described for approximately one thousand years, is often prescribed for cancer patients as a complementary therapy in China. However, the mechanism by which Si Jun Zi Tang enhances the efficacy of gefitinib is unclear. Methods We investigated how Si Jun Zi Tang affected the pharmacokinetics of gefitinib in rats. A rapid, specific, and reliable ultra-performance liquid chromatography method with mass spectrometry was established to determine the plasma concentration of gefitinib. Results The results showed that a single intragastrically administered dose of Si Jun Zi Tang increased the pharmacokinetic parameters of gefitinib (C max, 3156.13 μg/L; A UC, 46281.5 μg/L/h) by 3 folds in rats compared with the administration of gefitinib alone (C max, 1352.07 μg/L; AUC, 11823.7 μg/L/h). Si Jun Zi Tang could also alter the pharmacokinetics of gefitinib by prolonging the time to reach C max. Conclusions Potential pharmacokinetic interactions between gefitinib and SJZ were evaluated, and SJZ extended T max and T1/2 and increased the C max and AUC of gefitinib. Long-term administration of gefitinib in combination with Si Jun Zi Tang would improve the efficacy of gefitinib.
Collapse
|
25
|
Chen J, Li Z, Hua M, Sun Y. Protection by ginseng saponins against cyclophosphamide-induced liver injuries in rats by induction of cytochrome P450 expression and mediation of the l-arginine/nitric oxide pathway based on metabolomics. Phytother Res 2021; 35:3130-3144. [PMID: 33905145 DOI: 10.1002/ptr.6951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Ginseng saponins (GS) are the main active compounds in Panax ginseng and have been proven to be highly effective in attenuating the side effects of chemotherapy. However, there have been no reports on the mechanism of action of GS. Treatment with GS has certain benefits, including decreasing the toxicity levels in the liver [alanine aminotransferase (ALT), albumin (ALB), alkaline phosphatase (ALP), aspartate transaminase (AST)], reducing oxidative stress [malondialdehyde (MDA), nitric oxide (NO)], diminishing inflammatory factors [interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels], and augmenting the levels of glutathione (GSH) and superoxide dismutase (SOD). The pharmacokinetics study showed that the area under the curve from 0 to 24 hr (AUC 0-24 hr) of 4-ketocyclophosphamide (4-KetoCTX) and carboxyphosphamide (CPM) was significantly increased after GS treatment. This study found that GS treatment can reduce chloroacetaldehyde (CAA) production by affecting CYP3A4, CYP2B6, and CYP2C9 protein expression in the liver. For the metabolomics study, GS attenuated the abnormalities of amino acid metabolic pathways in CP-induced liver injuries of rats and significantly enhanced the l-arginine level while reducing the serum nitric oxide (NO) level. This outcome was confirmed by the inhibition of the activities of NO synthase in the liver of rats.
Collapse
Affiliation(s)
- Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhiman Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Mei Hua
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| |
Collapse
|
26
|
An UPLC-MS/MS Method for Determination of Osimertinib in Rat Plasma: Application to Investigating the Effect of Ginsenoside Rg3 on the Pharmacokinetics of Osimertinib. Int J Anal Chem 2021; 2020:8814214. [PMID: 33456471 PMCID: PMC7785372 DOI: 10.1155/2020/8814214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Osimertinib is a novel oral, potent, and irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) for treatment of advanced T790M mutation-positive advanced non-small cell lung cancer, which is commonly combined with ginsenoside Rg3 in clinic to enhance the efficacy and minimize adverse reactions. In the present study, a highly sensitive UPLC-MS/MS method was established and validated for analysis of osimertinib in rat plasma according to US FDA guideline. Separation was performed on a C18 (2.1 × 50 mm, 2.6 μm) column using a gradient elution of ammonium formate (10 mM) with 0.1% formic acid buffer (A) and ACN (B) at a flow rate of 0.2 mL/min. Detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization in the MRM mode. The method was validated over a concentration range of 1-400 ng/mL for osimertinib. The intra- and interday accuracy and precision values were within ±15%. No significant degradation occurred under the experimental conditions in stability assays. There was a further investigation on the effects of multiple doses of ginsenoside Rg3 on the pharmacokinetics of osimertinib in rats for the first time. The results implied that osimertinib exhibited a slow absorption and moderate-rate elimination in rats following oral administration. Coadministeration with ginsenoside Rg3 (5 mg/kg, 7 days, i.g.) may have no effect on the pharmacokinetics of osimertinib in rats. The results provide a reference for the clinical concomitant medications of Rg3 and osimertinib.
Collapse
|
27
|
Multifaceted Factors Causing Conflicting Outcomes in Herb-Drug Interactions. Pharmaceutics 2020; 13:pharmaceutics13010043. [PMID: 33396770 PMCID: PMC7824553 DOI: 10.3390/pharmaceutics13010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic enzyme and/or transporter-mediated pharmacokinetic (PK) changes in a drug caused by concomitant herbal products have been a primary issue of herb and drug interactions (HDIs), because PK changes of a drug may result in the alternation of efficacy and toxicity. Studies on HDIs have been carried out by predictive in vitro and in vivo preclinical studies, and clinical trials. Nevertheless, the discrepancies between predictive data and the clinical significance on HDIs still exist, and different reports of HDIs add to rather than clarify the confusion regarding the use of herbal products and drug combinations. Here, we briefly review the underlying mechanisms causing PK-based HDIs, and more importantly summarize challenging issues, such as dose and treatment period effects, to be considered in study designs and interpretations of HDI evaluations.
Collapse
|
28
|
Feng W, Liu J, Huang L, Tan Y, Peng C. Gut microbiota as a target to limit toxic effects of traditional Chinese medicine: Implications for therapy. Biomed Pharmacother 2020; 133:111047. [PMID: 33378954 DOI: 10.1016/j.biopha.2020.111047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicines (TCMs) are medicines that are widely used in oriental countries under the guidance of ancient Chinese medicinal philosophies. With thousands of years of experiences in fighting against diseases, TCMs are gaining increasing importance in the world. Although the efficacy of TCMs is well recognized in clinic, the toxicity of TCMs has become a serious issue around the world in recent years. In general, the toxicity of TCMs is caused by the toxic medicinal compounds and contaminants in TCMs such as pesticides, herbicides, and heavy metals. Recent studies have demonstrated that gut microbiota can interact with TCMs and thus influence the toxicity of TCMs. However, there is no focused review on gut microbiota and the toxicity of TCMs. Here, we summarized the influences of the gut microbiota on the toxicity of medicinal compounds in TCMs and the corresponding mechanisms were offered. Then, we discussed the relationships between gut microbiota and the TCM contaminants. In addition, we discussed the methods of manipulating gut microbiota to reduce the toxicity of TCMs. At the end of this review, the perspectives on gut microbiota and the toxicity of TCMs were also discussed.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
29
|
Karmazyn M, Gan XT. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol Cell Biochem 2020; 476:333-347. [PMID: 32940821 DOI: 10.1007/s11010-020-03910-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.
Collapse
|
30
|
Ghavami A, Ziaei R, Foshati S, Hojati Kermani MA, Zare M, Amani R. Benefits and harms of ginseng supplementation on liver function? A systematic review and meta-analysis. Complement Ther Clin Pract 2020; 39:101173. [DOI: 10.1016/j.ctcp.2020.101173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
|
31
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
32
|
Lin JF, Fan LL, Li BW, Zhao RR, Jiang LG, Zhang BC, Lu YS, Shao JW. A study to evaluate herb-drug interaction underlying mechanisms: An investigation of ginsenosides attenuating the effect of warfarin on cardiovascular diseases. Eur J Pharm Sci 2020; 142:105100. [PMID: 31669385 DOI: 10.1016/j.ejps.2019.105100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Warfarin and ginseng have been widely used in the treatment of cardiovascular diseases. However, the clinical safety and effectiveness of herb-drug combination treatment are still controversial. Therefore, it is very essential to probe the interaction between warfarin and ginseng. In this study, in vitro and in vivo study was carried out to demonstrate that whether there is an interaction between warfarin and ginsenosides (GS), which is the main component of ginseng. In vitro study showed that the adhesion ability between endothelial cells and matrigel/platelets was enhanced due to the up-regulating expression of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) proteins by treatment of warfarin+GS combination compared to warfarin/GS treatment alone. Moreover, GS could weaken the anticoagulation effect of warfarin in hyperlipemia rats owning to the increased expression levels of coagulation factors and hepatic cytochrome P450 enzymes in plasma after long-term co-administration of warfarin with GS. The results of both in vitro and in vivo study demonstrated that there is a serious interaction between warfarin and ginseng, which may deteriorate atherosclerosis and thrombosis after combined use of warfarin and GS.
Collapse
Affiliation(s)
- Juan-Fang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy,College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lu-Lu Fan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy,College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bo-Wen Li
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Rui-Rui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy,College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Long-Guang Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy,College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy,College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yu-Sheng Lu
- Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy,College of Chemistry, Fuzhou University, Fuzhou, 350116, China; Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
33
|
Synergistic effect of Aconiti Lateralis Radix Praeparata water-soluble alkaloids and Ginseng Radix et Rhizoma total ginsenosides compatibility on acute heart failure rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1137:121935. [DOI: 10.1016/j.jchromb.2019.121935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
|
34
|
Sun ZH, Chen J, Song YQ, Dou TY, Zou LW, Hao DC, Liu HB, Ge GB, Yang L. Inhibition of human carboxylesterases by ginsenosides: structure-activity relationships and inhibitory mechanism. Chin Med 2019; 14:56. [PMID: 31889992 PMCID: PMC6915887 DOI: 10.1186/s13020-019-0279-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human carboxylesterases (hCES) are key serine hydrolases responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters. Although it has been reported that some ginsenosides can modulate the activities of various enzymes, the inhibitory effects of ginsenosides on hCES have not been well-investigated. METHODS In this study, more than 20 ginsenosides were collected and their inhibitory effects on hCES1A and hCES2A were assayed using the highly specific fluorescent probe substrates for each isoenzyme. Molecular docking simulations were also performed to investigate the interactions between ginsenosides and hCES. RESULTS Among all tested ginsenosides, Dammarenediol II (DM) and 20S-O-β-(d-glucosyl)-dammarenediol II (DMG) displayed potent inhibition against both hCES1A and hCES2A, while protopanaxadiol (PPD) and protopanaxatriol (PPT) exhibited strong inhibition on hCES2A and high selectivity over hCES1A. Introduction of O-glycosyl groups at the core skeleton decreased hCES inhibition activity, while the hydroxyl groups at different sites might also effect hCES inhibition. Inhibition kinetic analyses demonstrated that DM and DMG functioned as competitive inhibitors against hCES1A-mediated d-luciferin methyl ester (DME) hydrolysis. In contrast, DM, DMG, PPD and PPT inhibit hCES2A-mediated fluorescein diacetate (FD) hydrolysis via a mixed manner. CONCLUSION The structure-inhibition relationships of ginsenosides as hCES inhibitors was investigated for the first time. Our results revealed that DM and DMG were potent inhibitors against both hCES1A and hCES2A, while PPD and PPT were selective and strong inhibitors against hCES2A.
Collapse
Affiliation(s)
- Zhao-Hui Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jing Chen
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221 China
| | - Yun-Qing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221 China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Da-Cheng Hao
- School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028 China
| | - Hai-Bin Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, 252201 China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
35
|
Intravenous formulation of Panax notoginseng root extract: human pharmacokinetics of ginsenosides and potential for perpetrating drug interactions. Acta Pharmacol Sin 2019; 40:1351-1363. [PMID: 31358899 DOI: 10.1038/s41401-019-0273-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
XueShuanTong, a lyophilized extract of Panax notoginseng roots (Sanqi) for intravenous administration, is extensively used as add-on therapy in the treatment of ischemic heart and cerebrovascular diseases and comprises therapeutically active ginsenosides. Potential for XueShuanTong-drug interactions was determined; the investigation focused on cytochrome P450 (CYP)3A induction and organic anion-transporting polypeptide (OATP)1B inhibition. Ginsenosides considerably bioavailable for drug interactions were identified by dosing XueShuanTong in human subjects and their interaction-related pharmacokinetics were determined. The CYP3A induction potential was determined by repeatedly dosing XueShuanTong for 15 days in human subjects and by treating cryopreserved human hepatocytes with circulating ginsenosides; midazolam served as a probe substrate. Joint inhibition of OATP1B by XueShuanTong ginsenosides was assessed in vitro, and the data were processed using the Chou-Talalay method. Samples were analyzed by liquid chromatography/mass spectrometry. Ginsenosides Rb1, Rd, and Rg1 and notoginsenoside R1 were the major circulating XueShuanTong compounds; their interaction-related pharmacokinetics comprised compound dose-dependent levels of systemic exposure and, for ginsenosides Rb1 and Rd, long terminal half-lives (32‒57 and 58‒307 h, respectively) and low unbound fractions in plasma (0.8%‒2.9% and 0.4%‒3.0%, respectively). Dosing XueShuanTong did not induce CYP3A. Based on the pharmacokinetics and inhibitory potency of the ginsenosides, XueShuanTong was predicted to have high potential for OATP1B3-mediated drug interactions (attributed chiefly to ginsenoside Rb1) suggesting the need for further model-based determination of the interaction potential for XueShuanTong and, if necessary, a clinical drug interaction study. Increased awareness of ginsenosides' pharmacokinetics and XueShuanTong-drug interaction potential will help ensure the safe use of XueShuanTong and coadministered synthetic drugs.
Collapse
|
36
|
Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res 2019; 142:176-191. [PMID: 30818043 DOI: 10.1016/j.phrs.2019.02.024] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.
Collapse
|
37
|
Yan S, Xiong H, Shao F, Zhang W, Yang F, Qi Z, Chen S, He L, Jiang M, Su Y, Zhu H, Qin S, Zhu Q, Luo X, Xing Q. HLA-C*12:02 is strongly associated with Xuesaitong-induced cutaneous adverse drug reactions. THE PHARMACOGENOMICS JOURNAL 2018; 19:277-285. [PMID: 30237582 DOI: 10.1038/s41397-018-0051-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022]
Abstract
Xuesaitong (XST) is mainly used to treat cardiovascular and cerebrovascular diseases, sometimes causing cutaneous adverse drug reactions (cADRs) with unknown mechanisms of pathogenicity or risk factors. We aimed to verify whether human leukocyte antigen (HLA) alleles are associated with XST-related cADRs in Han Chinese population. We carried out an association study including 12 subjects with XST-induced cADRs, 283 controls, and 28 XST-tolerant subjects. Five out of 12 patients with XST-induced cADRs carried HLA-C*12:02, and all of them received XST via intravenous drip. The carrier frequency of HLA-C*12:02 was significantly high compare to that of the control population (Pc = 4.4 × 10-4, odds ratio (OR) = 21.75, 95% CI = 5.78-81.88). Compared with that of the XST-tolerant group, the patients who received XST through intravenous drip presented a higher OR of cADRs (Pc = 0.011, OR = 27.00, 95% CI = 2.58-282.98). The results suggest that HLA-C*12:02 is a potentially predictive marker of XST-induced cADRs in Han Chinese, especially when XST is administered via intravenous drip.
Collapse
Affiliation(s)
- Sijia Yan
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Xiong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, 450003, China
| | - Wen Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fanping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zheng Qi
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shengan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lin He
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Menglin Jiang
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu Su
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huizhong Zhu
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shengying Qin
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinyuan Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoqun Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Qinghe Xing
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S. LC-MS based metabolic and metabonomic studies of Panax ginseng. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:331-340. [PMID: 29460310 DOI: 10.1002/pca.2752] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Panax ginseng has received much attention as a valuable health supplement with medicinal potential. Its chemical diversity and multiple pharmacological properties call for comprehensive methods to better understand the effects of ginseng and ginsenosides. Liquid chromatography-mass spectrometry (LC-MS) based metabonomic approaches just fit the purpose. OBJECTIVE Aims to give a review of recent progress on LC-MS based pharmacokinetic, metabolic, and phytochemical metabolomic studies of ginseng, and metabonomic studies of ginseng intervention effects. METHODS The review has four sections: the first section discusses metabolic studies of ginsenosides based on LC-MS, the second focuses on ginsenoside-drug interactions and pharmacokinetic interaction between herb compounds based on LC-MS, the third is phytochemical metabolomic studies of ginseng based on LC-MS, and the fourth deals with metabonomic studies of ginseng intervention effects based on LC-MS. RESULTS LC-MS based metabonomic research on ginseng include analysis of single ginsenoside and total ginsenosides. The theory of multi-components and multi-targeted mechanisms helps to explain ginseng effects. CONCLUSION LC-MS based metabonomics is a promising way to comprehensively assess ginseng. It is valuable for quality control and mechanism studies of ginseng.
Collapse
Affiliation(s)
- Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Chuanxi Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yue Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
39
|
So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018; 42:549-561. [PMID: 30337816 PMCID: PMC6190493 DOI: 10.1016/j.jgr.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ginseng has been traditionally used for several millennia in Asian countries, including Korea, China, and Japan, not only as a nourishing and tonifying agent but also as a therapeutic agent for a variety of diseases. In recent years, the various effects of red ginseng including immunity improvement, fatigue relief, memory improvement, blood circulation improvement, antioxidation, mitigation of menopausal women's symptoms, and anticancer an effect have been reported in clinical as well as basic research. Around the world, there is a trend of the rising consumption of health functional foods on the level of disease prevention along with increased interest in maintaining health because of population aging and the awareness of lifestyle diseases and chronic diseases. Red ginseng occupies an important position as a health functional food. But till now, international ginseng monographs including those of the World Health Organization have been based on data on white ginseng and have mentioned red ginseng only partly. Therefore, the red ginseng monograph is needed for component of red ginseng, functionality certified as a health functional food in the Korea Food and Drug Administration, major efficacy, action mechanism, and safety. The present red ginseng monograph will contribute to providing accurate information on red ginseng to agencies, businesses, and consumers both in South Korea and abroad.
Collapse
Affiliation(s)
- Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong Won Lee
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Young-Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H, Chang EB. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 2018; 5. [PMID: 28971602 PMCID: PMC5625165 DOI: 10.1002/prp2.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU‐100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU‐100 on drug metabolism have not been investigated. In this study, we analyzed the effect of TU‐100 on expression of key drug‐metabolizing enzymes (DMEs) and drug transporters (DTs) in murine liver and gastrointestinal tract using a dietary model. Liver, jejunum, and proximal colon were analyzed for phase I and II DMEs and DT mRNA expression by reverse transcription (RT) first by nonquantitative and followed by quantitative polymerase chain reaction (PCR) and protein expression. Liver, jejunum, and proximal colon expressed some identical but also unique DMEs and DTs. TU‐100 increased the greatest changes in cytochrome (Cyp) 2b10 and Cyp3a11 and Mdr1a. Basal and TU‐100 stimulated levels of DME and DT expression were gender‐dependent, dose‐dependent and reversible after cessation of TU‐100 supplementation, except for some changes in the intestine. Quantitative Western blot analysis of protein extracts confirmed the quantitative PCR results.
Collapse
Affiliation(s)
- Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mark W Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | | | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan.,Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Abstract
The human gut microbiota makes key contributions to the metabolism of ingested compounds (xenobiotics), transforming hundreds of dietary components, industrial chemicals, and pharmaceuticals into metabolites with altered activities, toxicities, and lifetimes within the body. The chemistry of gut microbial xenobiotic metabolism is often distinct from that of host enzymes. Despite their important consequences for human biology, the gut microbes, genes, and enzymes involved in xenobiotic metabolism are poorly understood. Linking these microbial transformations to enzymes and elucidating their biological effects is undoubtedly challenging. However, recent studies demonstrate that integrating traditional and emerging technologies can enable progress toward this goal. Ultimately, a molecular understanding of gut microbial xenobiotic metabolism will guide personalized medicine and nutrition, inform toxicology risk assessment, and improve drug discovery and development.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Vayu Maini Rekdal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. .,Broad Institute, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Yang Y, Ren C, Zhang Y, Wu X. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging. Aging Dis 2017; 8:708-720. [PMID: 29344412 PMCID: PMC5758347 DOI: 10.14336/ad.2017.0707] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.
Collapse
Affiliation(s)
- Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Zhang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoDan Wu
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
43
|
Kim SJ, Choi S, Kim M, Park C, Kim GL, Lee SO, Kang W, Rhee DK. Effect of Korean Red Ginseng extracts on drug-drug interactions. J Ginseng Res 2017; 42:370-378. [PMID: 29989018 PMCID: PMC6035379 DOI: 10.1016/j.jgr.2017.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/18/2017] [Indexed: 11/24/2022] Open
Abstract
Background Ginseng has been the subject of many experimental and clinical studies to uncover the diverse biological activities of its constituent compounds. It is a traditional medicine that has been used for its immunostimulatory, antithrombotic, antioxidative, anti-inflammatory, and anticancer effects. Ginseng may interact with concomitant medications and alter metabolism and/or drug transport, which may alter the known efficacy and safety of a drug; thus, the role of ginseng may be controversial when taken with other medications. Methods We extensively assessed the effects of Korean Red Ginseng (KRG) in rats on the expression of enzymes responsible for drug metabolism [cytochrome p450 (CYP)] and transporters [multiple drug resistance (MDR) and organic anion transporter (OAT)] in vitro and on the pharmacokinetics of two probe drugs, midazolam and fexofenadine, after a 2-wk repeated administration of KRG at different doses. Results The results showed that 30 mg/kg KRG significantly increased the expression level of CYP3A11 protein in the liver and 100 mg/kg KRG increased both the mRNA and protein expression of OAT1 in the kidney. Additionally, KRG significantly increased the mRNA and protein expression of OAT1, OAT3, and MDR1 in the liver. Although there were no significant changes in the metabolism of midazolam to its major metabolite, 1′-hydroxymidazolam, KRG significantly decreased the systemic exposure of fexofenadine in a dose-dependent manner. Conclusion Because KRG is used as a health supplement, there is a risk of KRG overdose; thus, a clinical trial of high doses would be useful. The use of KRG in combination with P-glycoprotein substrate drugs should also be carefully monitored.
Collapse
Affiliation(s)
- Se-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seungmok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Minsoo Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Changmin Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-On Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
44
|
Potential accumulation of protopanaxadiol-type ginsenosides in six-months toxicokinetic study of SHENMAI injection in dogs. Regul Toxicol Pharmacol 2017; 83:5-12. [DOI: 10.1016/j.yrtph.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
|
45
|
Xu J, Chen HB, Li SL. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Med Res Rev 2017; 37:1140-1185. [PMID: 28052344 DOI: 10.1002/med.21431] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
Herbal medicines (HMs) are much appreciated for their significant contribution to human survival and reproduction by remedial and prophylactic management of diseases. Defining the scientific basis of HMs will substantiate their value and promote their modernization. Ever-increasing evidence suggests that gut microbiota plays a crucial role in HM therapy by complicated interplay with HM components. This interplay includes such activities as: gut microbiota biotransforming HM chemicals into metabolites that harbor different bioavailability and bioactivity/toxicity from their precursors; HM chemicals improving the composition of gut microbiota, consequently ameliorating its dysfunction as well as associated pathological conditions; and gut microbiota mediating the interactions (synergistic and antagonistic) between the multiple chemicals in HMs. More advanced experimental designs are recommended for future study, such as overall chemical characterization of gut microbiota-metabolized HMs, direct microbial analysis of HM-targeted gut microbiota, and precise gut microbiota research model development. The outcomes of such research can further elucidate the interactions between HMs and gut microbiota, thereby opening a new window for defining the scientific basis of HMs and for guiding HM-based drug discovery.
Collapse
Affiliation(s)
- Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, P.R. China.,Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, 210028, P.R. China
| |
Collapse
|
46
|
Evaluation and Comparison of the Inhibition Effect of Astragaloside IV and Aglycone Cycloastragenol on Various UDP-Glucuronosyltransferase (UGT) Isoforms. Molecules 2016; 21:molecules21121616. [PMID: 27916843 PMCID: PMC6274106 DOI: 10.3390/molecules21121616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
As one of the main active ingredients from Radix Astragali (RA), orally dosed astragaloside IV (AST) is easily transformed to sapogenin-cycloastragenol (CAG) by deglycosylation in the gastrointestinal tract. Because the potential adverse effects of AST and CAG remain unclear, the present study in this article was carried out to investigate the inhibition effects of AST and CAG on UDP-glucuronosyltransferases (UGTs) to explore potential clinical toxicity. An in vitro UGTs incubation mixture was employed to study the inhibition of AST and CAG towards UGT isoforms. Concentrations of 100 μM for each compound were used to initially screen the inhibitory efficiency. Deglycosylation of AST to CAG could strongly increase the inhibitory effects towards almost all of the tested UGT isoforms, with an IC50 of 0.84 μM and 11.28 μM for UGT1A8 and UGT2B7, respectively. Ulteriorly, the inhibition type and kinetics of CAG towards UGT1A8 and UGT2B7 were evaluated depending on the initial screening results. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that CAG competitively inhibited UGT1A8 and noncompetitively inhibited UGT2B7. From the second plot drawn with the slopes from the Lineweaver-Burk plot versus the concentrations of CAG, the inhibition constant (Ki) was calculated to be 0.034 μM and 20.98 μM for the inhibition of UGT1A8 and UGT2B7, respectively. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1 > [I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), it was successfully predicted here that an in vivo herb-drug interaction between AST/CAG and drugs mainly undergoing UGT1A8- or UGT2B7-catalyzed metabolism might occur when the plasma concentration of CAG is above 0.034 μM and 20.98 μM, respectively.
Collapse
|
47
|
|
48
|
Kim MG, Kim Y, Jeon JY, Kim DS. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br J Clin Pharmacol 2016; 82:1580-1590. [PMID: 27495955 PMCID: PMC5099554 DOI: 10.1111/bcp.13080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022] Open
Abstract
Aims We assessed the drug interaction profile of fermented red ginseng with respect to the activity of major cytochrome (CYP) P450 enzymes and of a drug transporter protein, P‐glycoprotein (P‐gp), in healthy volunteers. Methods This study was an open‐label crossover study. The CYP probe cocktail drugs caffeine, losartan, dextromethorphan, omeprazole, midazolam and fexofenadine were administered before and after 2 weeks of fermented red ginseng administration. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and the 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data. Values were compared between before and after fermented red ginseng administration using analysis of variance (anova). Results Fifteen healthy male subjects were evaluated, none of whom were genetically defined as a poor CYP2C9, CYP2C19 or CYP2D6 metabolizer based on genotyping. Before and after fermented red ginseng administration, the geometric least‐square mean metabolic ratio (90% CI) was 0.901 (0.830–0.979) for caffeine (CYP1A2) to paraxanthine, 0.774 (0.720–0.831) for losartan (CYP2C9) to EXP3174, 1.052 (0.925–1.197) for omeprazole (CYP2C19) to 5‐hydroxyomeprazole, 1.150 (0.860–1.538) for dextromethorphan (CYP2D6) to dextrorphan, and 0.816 (0.673–0.990) for midazolam (CYP3A4) to 1‐hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time (AUClast) for fexofenadine (P‐gp) was 1.322 (1.112–1.571). Conclusion No significantly different drug interactions were observed between fermented red ginseng and the CYP probe substrates following the two‐week administration of concentrated fermented red ginseng. However, the inhibition of P‐gp was significantly different between fermented red ginseng and the CYP probe substrates. The use of fermented red ginseng requires close attention due to the potential for increased systemic exposure when it is used in combination with P‐gp substrate drugs.
Collapse
Affiliation(s)
- Min-Gul Kim
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yunjeong Kim
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ji-Young Jeon
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Dal-Sik Kim
- Department of Laboratory Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
49
|
Liu D, Li S, Qi JQ, Meng DL, Cao YF. The inhibitory effects of nor-oleanane triterpenoid saponins from Stauntonia brachyanthera towards UDP-glucuronosyltransferases. Fitoterapia 2016; 112:56-64. [PMID: 27223851 DOI: 10.1016/j.fitote.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
Abstract
The inhibition of UDP-glucuronosyltransferases (UGTs) by herbal components might be an important reason for clinical herb-drug interaction (HDI). The inhibitory effects on UGTs via nor-oleanane triterpenoid saponins, which were the bioactive ingredients from Stauntonia brachyanthera, a traditional Chinese folk medicines with highly biological values, were evaluated comprehensively with recombinant UGT isoforms as enzyme source and a nonspecific substrate 4-methylumbelliferone (4-MU) as substrate. The results showed that there are seven compounds, 2, 3, 4, 8, 9, 13 and 14, respectively, exhibited potential inhibitions towards UGT1A1, UGT1A3 and UGT1A10 among all 23 compounds isolated from the plants. The IC50 values were 17.1μM, 13.5μM, 9.5μM, 15.7μM, 16.3μM, 1.1μM, and 0.3μM, respectively. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A10, UGT1A1 and UGT1A3 was best fit to noncompetitive type and competitive, respectively. The inhibition kinetic parameter (Ki) was calculated to be 39μM, 17μM, 3.3μM, 10μM, 9.3μM, 0.19μM, and 0.016μM, respectively. All these experimental data suggested that HDI might occur when compounds containing herbs were co-administered with drugs which mainly undergo UGTs-mediated metabolism.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Qi Qi
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Da-Li Meng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, 200000, China; Translational Medicine Center, The First Affiliated Hospital of Liaoning Medical University, Jing Zhou, China
| |
Collapse
|
50
|
Ma BL, Ma YM. Pharmacokinetic herb–drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev 2016; 48:1-26. [DOI: 10.3109/03602532.2015.1124888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|