1
|
De Loma J, Gliga AR, Levi M, Ascui F, Gardon J, Tirado N, Broberg K. Arsenic Exposure and Cancer-Related Proteins in Urine of Indigenous Bolivian Women. Front Public Health 2020; 8:605123. [PMID: 33381488 PMCID: PMC7767847 DOI: 10.3389/fpubh.2020.605123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Indigenous people living in the Bolivian Andes are exposed through their drinking water to inorganic arsenic, a potent carcinogen. However, the health consequences of arsenic exposure in this region are unknown. The aim of this study was to evaluate associations between arsenic exposure and changes in cancer-related proteins in indigenous women (n = 176) from communities around the Andean Lake Poopó, Bolivia. Arsenic exposure was assessed in whole blood (B-As) and urine (as the sum of arsenic metabolites, U-As) by inductively coupled plasma-mass spectrometry (ICP-MS). Cancer-related proteins (N = 92) were measured in urine using the proximity extension assay. The median B-As concentration was 2.1 (range 0.60-9.1) ng/g, and U-As concentration was 67 (12-399) μg/L. Using linear regression models adjusted for age, urinary osmolality, and urinary leukocytes, we identified associations between B-As and four putative cancer-related proteins: FASLG, SEZ6L, LYPD3, and TFPI2. Increasing B-As concentrations were associated with lower protein expression of SEZ6L, LYPD3, and TFPI2, and with higher expression of FASLG in urine (no association was statistically significant after correcting for multiple comparisons). The associations were similar across groups with different arsenic metabolism efficiency, a susceptibility factor for arsenic toxicity. In conclusion, arsenic exposure in this region was associated with changes in the expression of some cancer-related proteins in urine. Future research is warranted to understand if these proteins could serve as valid biomarkers for arsenic-related toxicity.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural, Ministerio de Salud Bolivia, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Arsenic Methyltransferase and Methylation of Inorganic Arsenic. Biomolecules 2020; 10:biom10091351. [PMID: 32971865 PMCID: PMC7563989 DOI: 10.3390/biom10091351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Arsenic occurs naturally in the environment, and exists predominantly as inorganic arsenite (As (III) and arsenate As (V)). Arsenic contamination of drinking water has long been recognized as a major global health concern. Arsenic exposure causes changes in skin color and lesions, and more severe health conditions such as black foot disease as well as various cancers originating in the lungs, skin, and bladder. In order to efficiently metabolize and excrete arsenic, it is methylated to monomethylarsonic and dimethylarsinic acid. One single enzyme, arsenic methyltransferase (AS3MT) is responsible for generating both metabolites. AS3MT has been purified from several mammalian and nonmammalian species, and its mRNA sequences were determined from amino acid sequences. With the advent of genome technology, mRNA sequences of AS3MT have been predicted from many species throughout the animal kingdom. Horizontal gene transfer had been postulated for this gene through phylogenetic studies, which suggests the importance of this gene in appropriately handling arsenic exposures in various organisms. An altered ability to methylate arsenic is dependent on specific single nucleotide polymorphisms (SNPs) in AS3MT. Reduced AS3MT activity resulting in poor metabolism of iAs has been shown to reduce expression of the tumor suppressor gene, p16, which is a potential pathway in arsenic carcinogenesis. Arsenic is also known to induce oxidative stress in cells. However, the presence of antioxidant response elements (AREs) in the promoter sequences of AS3MT in several species does not correlate with the ability to methylate arsenic. ARE elements are known to bind NRF2 and induce antioxidant enzymes to combat oxidative stress. NRF2 may be partly responsible for the biotransformation of iAs and the generation of methylated arsenic species via AS3MT. In this article, arsenic metabolism, excretion, and toxicity, a discussion of the AS3MT gene and its evolutionary history, and DNA methylation resulting from arsenic exposure have been reviewed.
Collapse
|
3
|
Zhang L, Huang J, Lin Q, Ma Y, Xia R, Zhu Y, Abudubari S. Serum Proteomic Profiling Analysis of Rats Chronically Exposed to Arsenic. Med Sci Monit 2019; 25:9923-9932. [PMID: 31874112 PMCID: PMC6941779 DOI: 10.12659/msm.918696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Arsenic (As) is an environmental contaminant, and As pollution in water and soil is a public health issue worldwide. As exposure is associated with the incidence of many disorders, such as arteriosclerosis, diabetes, neurodegenerative diseases, and renal dysfunction. However, the mechanism of As toxicity remains unclear. Material/Methods We investigated the changes in serum protein profiles of rats chronically exposed to As. Twenty healthy rats were randomly divided into 4 groups, and sodium arsenite of varying final concentrations (0, 2, 10, and 50 mg/L, respectively) was add into the drinking water for each group. The administration lasted for 3 months. Two proteomic strategies, isobaric tags for relative and absolute quantitation (iTRAQ), and 2-dimensional gel electrophoresis (2-DE), were employed to screen the differential serum proteins between control and arsenite exposure groups. Results We identified a total of 27 differentially-expressed proteins, among which 9 proteins were significantly upregulated and 18 were downregulated by As exposure. Many of the differentially-expressed proteins were related to fat digestion and absorption, including 5 apolipoproteins, which indicated lipid metabolism may be the most affected by As exposure. Conclusions This study revealed the influence of As on lipid metabolism, suggesting an increased potential risk of relevant diseases in subjects chronically exposed to As.
Collapse
Affiliation(s)
- Ling Zhang
- Division of Endemic Disease Prevention, Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China (mainland)
| | - Jia Huang
- Division of Endemic Disease Prevention, Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China (mainland).,School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Qin Lin
- Division of Endemic Disease Prevention, Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China (mainland)
| | - Yan Ma
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Rongxiang Xia
- Division of Endemic Disease Prevention, Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China (mainland)
| | - Yuming Zhu
- Division of Endemic Disease Prevention, Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China (mainland)
| | - Saimaitikari Abudubari
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
4
|
Parvez F, Akhtar E, Khan L, Haq MA, Islam T, Ahmed D, Eunus HEMM, Hasan AKMR, Ahsan H, Graziano JH, Raqib R. Exposure to low-dose arsenic in early life alters innate immune function in children. J Immunotoxicol 2019; 16:201-209. [PMID: 31703545 PMCID: PMC7041495 DOI: 10.1080/1547691x.2019.1657993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 01/06/2023] Open
Abstract
Early-life exposure to arsenic (As) increases risks of respiratory diseases/infections in children. However, data on the ability of the innate immune system to combat bacterial infections in the respiratory tracts of As-exposed children are scarce. To evaluate whether persistent low-dose As exposure alters innate immune function among children younger than 5 years-of-age, mothers and participating children (N = 51) that were members of the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in rural Bangladesh were recruited. Household water As, past and concurrent maternal urinary As (U-As) as well as child U-As were all measured at enrollment. In addition, U-As metabolites were evaluated. Innate immune function was examined via measures of cathelicidin LL-37 in plasma, ex vivo monocyte-derived-macrophage (MDM)-mediated killing of Streptococcus pneumoniae (Spn), and serum bactericidal antibody (SBA) responses against Haemophilus influenzae type b (Hib). Cyto-/chemokines produced by isolated peripheral blood mononuclear cells (PBMC) were assayed using a Multiplex system. Multivariable linear regression analyses revealed that maternal (p < 0.01) and child (p = 0.02) U-As were positively associated with plasma LL-37 levels. Decreased MDM-mediated Spn killing (p = 0.05) and SBA responses (p = 0.02) were seen to be each associated with fractions of mono-methylarsonic acid (MMA; a U-As metabolite) in the children. In addition, U-As levels were seen to be negatively associated with PBMC formation of fractalkine and IL-7, and positively associated with that for IL-13, IL-17 and MIP-1α. These findings suggested that early-life As exposure may disrupt the innate host defense pathway in these children. It is possible that such disruptions may have health consequences later in life.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Lamia Khan
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Md. Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Tariqul Islam
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Dilruba Ahmed
- Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - HEM Mahbubul Eunus
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - AKM Rabiul Hasan
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5841 South Maryland Avenue, Chicago, IL
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
5
|
Zhou Y, Lei Y, Cao Z, Chen X, Sun Y, Xu Y, Guo W, Wang S, Liu C. A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:105-115. [PMID: 30448509 DOI: 10.1016/j.dci.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 05/06/2023]
Abstract
Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one β-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known β-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Yue Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Shifeng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| |
Collapse
|
6
|
Guo Z, Hu Q, Tian J, Yan L, Jing C, Xie HQ, Bao W, Rice RH, Zhao B, Jiang G. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:34-38. [PMID: 27552035 DOI: 10.1016/j.envpol.2016.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure.
Collapse
Affiliation(s)
- Zhiling Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qin Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jijing Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenjun Bao
- JMP Life Sciences, SAS Institute, Cary, NC 27513, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Propst CN, Pylypko SL, Blower RJ, Ahmad S, Mansoor M, van Hoek ML. Francisella philomiragia Infection and Lethality in Mammalian Tissue Culture Cell Models, Galleria mellonella, and BALB/c Mice. Front Microbiol 2016; 7:696. [PMID: 27252681 PMCID: PMC4877389 DOI: 10.3389/fmicb.2016.00696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Francisella (F.) philomiragia is a Gram-negative bacterium with a preference for brackish environments that has been implicated in causing bacterial infections in near-drowning victims. The purpose of this study was to characterize the ability of F. philomiragia to infect cultured mammalian cells, a commonly used invertebrate model, and, finally, to characterize the ability of F. philomiragia to infect BALB/c mice via the pulmonary (intranasal) route of infection. This study shows that F. philomiragia infects J774A.1 murine macrophage cells, HepG2 cells and A549 human Type II alveolar epithelial cells. However, replication rates vary depending on strain at 24 h. F. philomiragia infection after 24 h was found to be cytotoxic in human U937 macrophage-like cells and J774A.1 cells. This is in contrast to the findings that F. philomiragia was non-cytotoxic to human hepatocellular carcinoma cells, HepG2 cells and A549 cells. Differential cytotoxicity is a point for further study. Here, it was demonstrated that F. philomiragia grown in host-adapted conditions (BHI, pH 6.8) is sensitive to levofloxacin but shows increased resistance to the human cathelicidin LL-37 and murine cathelicidin mCRAMP when compared to related the Francisella species, F. tularensis subsp. novicida and F. tularensis subsp. LVS. Previous findings that LL-37 is strongly upregulated in A549 cells following F. tularensis subsp. novicida infection suggest that the level of antimicrobial peptide expression is not sufficient in cells to eradicate the intracellular bacteria. Finally, this study demonstrates that F. philomiragia is lethal in two in vivo models; Galleria mellonella via hemocoel injection, with a LD50 of 1.8 × 103, and BALB/c mice by intranasal infection, with a LD50 of 3.45 × 103. In conclusion, F. philomiragia may be a useful model organism to study the genus Francisella, particularly for those researchers with interest in studying microbial ecology or environmental strains of Francisella. Additionally, the Biosafety level 2 status of F. philomiragia makes it an attractive model for virulence and pathogenesis studies.
Collapse
Affiliation(s)
- Crystal N Propst
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Ryan J Blower
- School of Systems Biology, George Mason University, Manassas, VA USA
| | - Saira Ahmad
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VAUSA; National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VAUSA
| |
Collapse
|
8
|
Zhang JH, Li Y, Song XB, Ji XH, Sun HN, Wang H, Fu SB, Zhao LJ, Sun DJ. Differential expression of serum proteins in rats subchronically exposed to arsenic identified by iTRAQ-based proteomic technology-14-3-3 ζ protein to serve as a potential biomarker. Toxicol Res (Camb) 2016; 5:651-659. [PMID: 30090378 DOI: 10.1039/c5tx00393h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a multi-system toxicant. However, the mechanism of arsenic toxicity is not fully clarified and few effective protein biomarkers could be used for arsenic poisoning. This study was to investigate the differentially expressed proteins in the serum of rats subchronically exposed to arsenic. Sixty male rats were randomly divided into four groups, and the dose of sodium arsenite in drinking water for each group was 0, 2, 10, and 50 mg L-1, respectively. The exposure lasted for 12 weeks. An Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic approach was used to identify the differentially expressed proteins in serum between control and 50 mg L-1 groups. A total of 201 serum proteins were identified by iTRAQ, of which 12 were significantly changed by arsenic exposure with two up-regulated and ten down-regulated proteins. One down-regulated protein 14-3-3 ζ, an abundant protein expressed in the brain, was verified by ELISA using serum samples and by immunohistochemical, real time PCR, and western blot methods using brain tissues in four groups. Our work provided valuable insight into the serum protein changes in rats exposed to arsenic, and indicated that 14-3-3 ζ may serve as a useful biomarker for nervous damage caused by arsenic poisoning.
Collapse
Affiliation(s)
- Jin Hui Zhang
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Ying Li
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Xuan Bo Song
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Xiao Hong Ji
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Hong Na Sun
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Hui Wang
- Community Health Service Center of Nanxiang Town , Jiading District , Shanghai 201802 , China
| | - Song Bin Fu
- The Laboratory of Medical Genetics , Harbin Medical University , Harbin 150081 , China
| | - Li Jun Zhao
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Dian Jun Sun
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| |
Collapse
|
9
|
Kalló G, Chatterjee A, Tóth M, Rajnavölgyi É, Csutak A, Tőzsér J, Csősz É. Relative quantification of human β-defensins by a proteomics approach based on selected reaction monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1623-1631. [PMID: 26467114 DOI: 10.1002/rcm.7259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE A targeted proteomics method based on selected reaction monitoring (SRM) is a relevant approach for the analysis of multiple analytes in biological samples. Defensins are phylogenetically conserved small antimicrobial peptides contributing to innate host defense and exhibiting low immunogenicity, resistance to proteolysis and a broad range of antimicrobial activities. The goal of the present study was to develop and optimize SRM-based targeted proteomics methods for the detection of human β-defensins 1-4 in various biological fluids. METHODS An SRM-based targeted proteomics method was developed and validated for the detection of human β-defensins 1-4. The supernatants of resting and IL-1β-stimulated Caco2, HT-29 and SW-1116 colonic epithelial cells (CEC), cell lysates of CECs and tear samples of human healthy individuals were analyzed and the feasibility of the developed method was validated by ELISA and dot-blot analysis complemented by RT-qPCR. RESULTS Our results demonstrate that the developed SRM method offers an alternative approach for the cost-effective and rapid analysis of human β-defensins in samples with biological relevance. CONCLUSIONS A semi-quantitative targeted mass spectrometry method was developed and validated for the relative quantification of β-defensins 1-4 in cell culture supernatants and body fluid analyses.
Collapse
Affiliation(s)
- Gergő Kalló
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Arunima Chatterjee
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| |
Collapse
|
10
|
Dangleben NL, Skibola CF, Smith MT. Arsenic immunotoxicity: a review. Environ Health 2013; 12:73. [PMID: 24004508 PMCID: PMC3848751 DOI: 10.1186/1476-069x-12-73] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/24/2013] [Indexed: 05/06/2023]
Abstract
Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease.
Collapse
Affiliation(s)
- Nygerma L Dangleben
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Christine F Skibola
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL 35294, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Moore LE, Karami S, Steinmaus C, Cantor KP. Use of OMIC technologies to study arsenic exposure in human populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:589-595. [PMID: 23893652 DOI: 10.1002/em.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Exposure to arsenic (As) in drinking water is a major health concern. More than 100 million individuals are exposed to levels over the current World Health Organization standard of 10 µg/L worldwide. Arsenic is one of the few agents established as a human carcinogen prior to understanding its mechanism of carcinogenicity. OMIC technologies have enabled researchers to utilize agnostic approaches to explore new, unknown mechanisms through which As causes disease in exposed human populations. In this article, we present recent studies in which OMIC technologies have been used to explore differences in human biological samples to identify markers of exposure, disease susceptibility, and effect in As-exposed and/or diseased tissues.
Collapse
Affiliation(s)
- Lee E Moore
- Division of Cancer Epidemiology and Genetics (DCEG), US National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
12
|
Takeda S, Yamaai T, Kaneda Y, Mizukawa N, Iida S, Fujimaki H. Toluene Exposure Leads to a Change in Expression Patterns of β Defensins in the Mouse Tracheal Epithelium. J Toxicol Pathol 2013; 26:35-40. [PMID: 23723566 PMCID: PMC3620212 DOI: 10.1293/tox.26.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Defensins are generally implicated in the quick resistance of epithelial surfaces to microbials; however, recent reports have indicated that defensins also have unknown purposes in relation to noninfectious diseases. In this study, the localization patterns of anti-microbial peptides, β defensins (BDs), in the tracheal epithelium of male C3H mice under exposure to toluene were analyzed by immunohistochemistry. Mice were exposed one to ten times to toluene for 30 min by nose-only inhalation. Expression of BDs was revealed by immunohistochemistry in serial sections of trachea after the final exposure. Expression of BD-1 was usually observed at almost the same levels in all exposure groups, and expression of BD-2 was observed in the control group; however, the signals for BD-2 decreased gradually with frequency of exposure. In the group exposed ten times, expression of BD-2 decreased to far lower than that of the control group. No expression of BD-3 was detected in any groups. Interestingly, expression of BD-4 increased to the maximum in the group exposed four times and decreased to a level lower than that of the control in the group exposed ten times. The results of the present study indicated that toluene gas might change the expression pattern of BDs in the tracheal epithelial cells. The oscillation of expression of BD-4 was quite characteristic and might contribute to morphological damage in on the epithelial cells.
Collapse
Affiliation(s)
- Seiko Takeda
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
14
|
Kossowska B, Dudka I, Gancarz R, Antonowicz-Juchniewicz J. Application of classic epidemiological studies and proteomics in research of occupational and environmental exposure to lead, cadmium and arsenic. Int J Hyg Environ Health 2013; 216:1-7. [DOI: 10.1016/j.ijheh.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/16/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
15
|
Yang M. A current global view of environmental and occupational cancers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:223-249. [PMID: 21929381 DOI: 10.1080/10590501.2011.601848] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This review is focused on current information of avoidable environmental pollution and occupational exposure as causes of cancer. Approximately 2% to 8% of all cancers are thought to be due to occupation. In addition, occupational and environmental cancers have their own characteristics, e.g., specific chemicals and cancers, multiple factors, multiple causation and interaction, or latency period. Concerning carcinogens, asbestos/silica/wood dust, soot/polycyclic aromatic hydrocarbons [benzo(a) pyrene], heavy metals (arsenic, chromium, nickel), aromatic amines (4-aminobiphenyl, benzidine), organic solvents (benzene or vinyl chloride), radiation/radon, or indoor pollutants (formaldehyde, tobacco smoking) are mentioned with their specific cancers, e.g., lung, skin, and bladder cancers, mesothelioma or leukemia, and exposure routes, rubber or pigment manufacturing, textile, painting, insulation, mining, and so on. In addition, nanoparticles, electromagnetic waves, and climate changes are suspected as future carcinogenic sources. Moreover, the aspects of environmental and occupational cancers are quite different between developing and developed countries. The recent follow-up of occupational cancers in Nordic countries shows a good example for developed countries. On the other hand, newly industrializing countries face an increased burden of occupational and environmental cancers. Developing countries are particularly suffering from preventable cancers in mining, agriculture, or industries without proper implication of safety regulations. Therefore, industrialized countries are expected to educate and provide support for developing countries. In addition, citizens can encounter new environmental and occupational carcinogen nominators such as nanomaterials, electromagnetic wave, and climate exchanges. As their carcinogenicity or involvement in carcinogenesis is not clearly unknown, proper consideration for them should be taken into account. For these purposes, new technologies with a balance of environment and gene are required. Currently, various approaches with advanced technologies--genomics, exposomics, etc.--have accelerated development of new biomarkers for biological monitoring of occupational and environmental carcinogens. These advanced approaches are promising to improve quality of life and to prevent occupational and environmental cancers.
Collapse
Affiliation(s)
- Mihi Yang
- College of Pharmacy, Sookmyung Women's University, Chungpa-Dong, Yongsan-Gu, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Schmitz-Spanke S, Rettenmeier AW. Protein expression profiling in chemical carcinogenesis: A proteomic-based approach. Proteomics 2011; 11:644-56. [DOI: 10.1002/pmic.201000403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 11/11/2022]
|
17
|
Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:11-9. [PMID: 20682481 PMCID: PMC3018488 DOI: 10.1289/ehp.1002114] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/02/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. OBJECTIVE We examined the evidence supporting the roles of the three major epigenetic mechanisms-DNA methylation, histone modification, and microRNA (miRNA) expression-in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. DATA SOURCES AND SYNTHESIS We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. CONCLUSIONS Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.
Collapse
Affiliation(s)
- Xuefeng Ren
- Division of Environmental Health Sciences, School of Public Health, University of California–Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
18
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
19
|
Kossowska B, Dudka I, Bugla-Płoskońska G, Szymańska-Chabowska A, Doroszkiewicz W, Gancarz R, Andrzejak R, Antonowicz-Juchniewicz J. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: a preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5317-24. [PMID: 20805001 DOI: 10.1016/j.scitotenv.2010.07.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 05/18/2023]
Abstract
The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.
Collapse
Affiliation(s)
- Barbara Kossowska
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wrocław, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vlaanderen J, Moore LE, Smith MT, Lan Q, Zhang L, Skibola CF, Rothman N, Vermeulen R. Application of OMICS technologies in occupational and environmental health research; current status and projections. Occup Environ Med 2009; 67:136-43. [PMID: 19933307 DOI: 10.1136/oem.2008.042788] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OMICS technologies are relatively new biomarker discovery tools that can be applied to study large sets of biological molecules. Their application in human observational studies (HOS) has become feasible in recent years due to a spectacular increase in the sensitivity, resolution and throughput of OMICS-based assays. Although, the number of OMICS techniques is ever expanding, the five most developed OMICS technologies are genotyping, transcriptomics, epigenomics, proteomics and metabolomics. These techniques have been applied in HOS to various extents. However, their application in occupational environmental health (OEH) research has been limited. Here, we will discuss the opportunities these new techniques provide for OEH research. In addition we will address difficulties and limitations to the interpretation of the data that is generated by OMICS technologies. To illustrate the current status of the application of OMICS in OEH research, we will provide examples of studies that used OMICS technologies to investigate human health effects of two well-known toxicants, benzene and arsenic.
Collapse
Affiliation(s)
- J Vlaanderen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, University Utrecht, Po Box 80178, 3508 TD, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 2009; 10:3951-3970. [PMID: 19865528 PMCID: PMC2769137 DOI: 10.3390/ijms10093951] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/17/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022] Open
Abstract
Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections.
Collapse
|
23
|
Droin N, Hendra JB, Ducoroy P, Solary E. Human defensins as cancer biomarkers and antitumour molecules. J Proteomics 2009; 72:918-27. [PMID: 19186224 DOI: 10.1016/j.jprot.2009.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 12/20/2022]
Abstract
Human defensins, which are small cationic peptides produced by neutrophils and epithelial cells, form two genetically distinct alpha and beta subfamilies. They are involved in innate immunity through killing microbial pathogens or neutralizing bacterial toxins and in adaptive immunity by serving as chemoattractants and activators of immune cells. alpha-defensins are mainly packaged in neutrophil granules (HNP1, HNP2, HNP3) or secreted by intestinal Paneth cells (HD5, HD6), while beta-defensins are expressed in mucosa and epithelial cells. Using surface enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) mass spectrometry (MS), alpha-defensins were found to be expressed in a variety of human tumours, either in tumour cells or at their surface. HNP1-3 peptides are also secreted and their accumulation in biological fluids was proposed as a tumour biomarker. Conversely, beta-defensin-1 (HBD-1) is down-regulated in some tumour types in which it could behave as a tumour suppressor protein. Alpha-defensins promote tumour cell growth or, at higher concentration, provoke cell death. These peptides also inhibit angiogenesis, which, in addition to immunomodulation, indicates a complex role in tumour development. This review summarizes current knowledge of defensins to discuss their role in tumour growth, tumour monitoring and cancer treatment.
Collapse
|