1
|
Burgum MJ, Ulrich C, Partosa N, Evans SJ, Gomes C, Seiffert SB, Landsiedel R, Honarvar N, Doak SH. Adapting the in vitro micronucleus assay (OECD Test Guideline No. 487) for testing of manufactured nanomaterials: recommendations for best practices. Mutagenesis 2024; 39:205-217. [PMID: 38502821 DOI: 10.1093/mutage/geae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.
Collapse
Affiliation(s)
- Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Clarissa Ulrich
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Natascha Partosa
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Caroline Gomes
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
- Free University of Berlin, Pharmacy - Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| |
Collapse
|
2
|
Carpen LG, Acasandrei MA, Acsente T, Matei E, Lungu I, Dinescu G. In vitro analysis of the cytotoxic effect of two different sizes ITER-like tungsten nanoparticles on human dermal fibroblasts. Heliyon 2023; 9:e13849. [PMID: 36895402 PMCID: PMC9988585 DOI: 10.1016/j.heliyon.2023.e13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Background Based on the current configuration of the International Thermonuclear Experimental Reactor, tungsten (W) was chosen as the armour material. Nevertheless, during operation, the expected power and temperature of plasma can trigger the formation of W dust in the plasma chamber. According to the scenario for a Loss Of Vacuum Accident (LOVA), in the case of confinement failure dust is released, which can lead to occupational or accidental exposure. Methods For a first evidence of potential risks, fusion devices relevant W dust has been produced on purpose, using a magnetron sputtering gas aggregation source. We aimed to assess the in vitro cytotoxicity of synthesized tungsten nanoparticles (W-NPs) with diameters of 30 and 100 nm, on human BJ fibroblasts. That was systematically investigated using different cytotoxic endpoints (metabolic activity, cellular ATP, AK release and caspase-3/7 activity) and by direct observation with optical and scanning electron microscopy. Results Increasing concentrations of W-NPs of both sizes induced cell viability decrease, but the effect was significantly higher for large W-NPs, starting from 200 μg/mL. In direct correlation with the effect on the cell membrane integrity, high concentrations of large W-NPs appear to increase AK release in the first 24 h of treatment. On the other hand, activation of the cellular caspase 3/7 was found significantly increased after 16 h of treatment solely for low concentrations of small W-NPs. SEM images revealed an increased tendency of agglomeration of small W-NPs in liquid medium, but no major differences in cells development and morphology were observed after treatment. An apparent internalization of nanoparticles under the cell membrane was also identified. Conclusion These results provide evidence for different toxicological outputs identified as mechanistic responses of BJ fibroblasts to different sizes of W-NPs, indicating also that small W-NPs (30 nm) display lower cytotoxicity compared to larger ones (100 nm).
Collapse
Affiliation(s)
- Lavinia Gabriela Carpen
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125, Magurele, Ilfov, Romania.,Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Maria Adriana Acasandrei
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, 077125, Magurele, Ilfov, Romania
| | - Tomy Acsente
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Elena Matei
- National Institute of Materials Physics, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Iulia Lungu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Gheorghe Dinescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125, Magurele, Ilfov, Romania.,Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125, Magurele, Ilfov, Romania
| |
Collapse
|
3
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Hadrup N, Sørli JB, Sharma AK. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology 2022; 467:153098. [PMID: 35026344 DOI: 10.1016/j.tox.2022.153098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022]
Abstract
Molybdenum, lithium, and tungsten are constituents of many products, and exposure to these elements potentially occurs at work. Therefore it is important to determine at what levels they are toxic, and thus we set out to review their pulmonary toxicity, genotoxicity, and carcinogenicity. After pulmonary exposure, molybdenum and tungsten are increased in multiple tissues; data on the distribution of lithium are limited. Excretion of all three elements is both via faeces and urine. Molybdenum trioxide exerted pulmonary toxicity in a 2-year inhalation study in rats and mice with a lowest-observed-adverse-effect concentration (LOAEC) of 6.6 mg Mo/m3. Lithium chloride had a LOAEC of 1.9 mg Li/m3 after subacute inhalation in rabbits. Tungsten oxide nanoparticles resulted in a no-observed-adverse-effect concentration (NOAEC) of 5 mg/m3 after inhalation in hamsters. In another study, tungsten blue oxide had a LOAEC of 63 mg W/m3 in rats. Concerning genotoxicity, for molybdenum, the in vivo genotoxicity after inhalation remains unknown; however, there was some evidence of carcinogenicity of molybdenum trioxide. The data on the genotoxicity of lithium are equivocal, and one carcinogenicity study was negative. Tungsten seems to have a genotoxic potential, but the data on carcinogenicity are equivocal. In conclusion, for all three elements, dose descriptors for inhalation toxicity were identified, and the potential for genotoxicity and carcinogenicity was assessed.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Jorid B Sørli
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kemitorvet, 201, 031, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Nelissen I, Haase A, Anguissola S, Rocks L, Jacobs A, Willems H, Riebeling C, Luch A, Piret JP, Toussaint O, Trouiller B, Lacroix G, Gutleb AC, Contal S, Diabaté S, Weiss C, Lozano-Fernández T, González-Fernández Á, Dusinska M, Huk A, Stone V, Kanase N, Nocuń M, Stępnik M, Meschini S, Ammendolia MG, Lewinski N, Riediker M, Venturini M, Benetti F, Topinka J, Brzicova T, Milani S, Rädler J, Salvati A, Dawson KA. Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study. NANOMATERIALS 2020; 10:nano10081430. [PMID: 32707981 PMCID: PMC7466672 DOI: 10.3390/nano10081430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.
Collapse
Affiliation(s)
- Inge Nelissen
- Health Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.J.); (H.W.)
- Correspondence: ; Tel.: +32-14-335107
| | - Andrea Haase
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (A.H.); (C.R.); (A.L.)
| | - Sergio Anguissola
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
- Charles River Laboratories, Carrowntreila, Ballina, Co. Mayo, Ireland
| | - Louise Rocks
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
- Science Foundation Ireland, Three Park Place, Hatch Street Upper, Dublin 2, Ireland
| | - An Jacobs
- Health Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.J.); (H.W.)
| | - Hanny Willems
- Health Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.J.); (H.W.)
| | - Christian Riebeling
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (A.H.); (C.R.); (A.L.)
| | - Andreas Luch
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (A.H.); (C.R.); (A.L.)
| | - Jean-Pascal Piret
- Research Unit in Cellular Biology (URBC), Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Olivier Toussaint
- Research Unit in Cellular Biology (URBC), Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Bénédicte Trouiller
- Experimental Toxicology Unit, Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Alata, BP2, 60550 Verneuil-en-Halatte, France; (B.T.); (G.L.)
| | - Ghislaine Lacroix
- Experimental Toxicology Unit, Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Alata, BP2, 60550 Verneuil-en-Halatte, France; (B.T.); (G.L.)
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg; (A.C.G.); (S.C.)
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg; (A.C.G.); (S.C.)
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.D.); (C.W.)
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.D.); (C.W.)
| | - Tamara Lozano-Fernández
- Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain; (T.L.-F.); (Ã.G.-F.)
- Nanoimmunotech SL, Edificio CITEXVI Fonte das Abelleiras s/n, Campus Universitario de Vigo, 36310 Vigo, Pontevedra, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain; (T.L.-F.); (Ã.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Hospital Álvaro Cunqueiro, Estrada Clara Campoamor 341, Babio – Beade, 36312 Vigo, Spain
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Instituttveien 18, 2007 Kjeller, Norway; (M.D.); (A.H.)
| | - Anna Huk
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Instituttveien 18, 2007 Kjeller, Norway; (M.D.); (A.H.)
- Gentian Diagnostics AS, Bjørnåsveien 5, 1596 Moss, Norway
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University (HWU), Riccarton Campus, Edinburgh EH14 4AS, UK; (V.S.); (N.K.)
| | - Nilesh Kanase
- School of Life Sciences, Heriot-Watt University (HWU), Riccarton Campus, Edinburgh EH14 4AS, UK; (V.S.); (N.K.)
| | - Marek Nocuń
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine (NIOM), 91-348 Łódź, Poland; (M.N.); (M.S.)
- SEQme s.r.o., Dlouha 176, 26301 Dobris, Czech Republic
| | - Maciej Stępnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine (NIOM), 91-348 Łódź, Poland; (M.N.); (M.S.)
| | - Stefania Meschini
- National Center for Drug Research and Evaluation and National Center of Innovative Technologies for Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena, 299 Rome, Italy; (S.M.); (M.G.A.)
| | - Maria Grazia Ammendolia
- National Center for Drug Research and Evaluation and National Center of Innovative Technologies for Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena, 299 Rome, Italy; (S.M.); (M.G.A.)
| | - Nastassja Lewinski
- Institute for Work and Health (IST), University of Lausanne and University of Geneva, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; (N.L.); (M.R.)
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael Riediker
- Institute for Work and Health (IST), University of Lausanne and University of Geneva, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; (N.L.); (M.R.)
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, 8404 Winterthur, Switzerland
- School of Materials Science & Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798, Singapore
| | - Marco Venturini
- ECAMRICERT SRL, European Center for the Sustainable Impact of Nanotechnology (ECSIN), Corso Stati Uniti 4, 35127 Padova, Italy; (M.V.); (F.B.)
| | - Federico Benetti
- ECAMRICERT SRL, European Center for the Sustainable Impact of Nanotechnology (ECSIN), Corso Stati Uniti 4, 35127 Padova, Italy; (M.V.); (F.B.)
| | - Jan Topinka
- Institute of Experimental Medicine (IEM), Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (J.T.); (T.B.)
| | - Tana Brzicova
- Institute of Experimental Medicine (IEM), Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (J.T.); (T.B.)
- Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13, 70030 Ostrava-Vyskovice, Czech Republic
| | - Silvia Milani
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Geshwister-Scholl-Platz 1, 80539 Munich, Germany; (S.M.); (J.R.)
| | - Joachim Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Geshwister-Scholl-Platz 1, 80539 Munich, Germany; (S.M.); (J.R.)
| | - Anna Salvati
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
| |
Collapse
|
6
|
Costamagna F, Hillaireau H, Vergnaud J, Clarisse D, Jamgotchian L, Loreau O, Denis S, Gravel E, Doris E, Fattal E. Nanotoxicology at the particle/micelle frontier: influence of core-polymerization on the intracellular distribution, cytotoxicity and genotoxicity of polydiacetylene micelles. NANOSCALE 2020; 12:2452-2463. [PMID: 31915784 DOI: 10.1039/c9nr08714a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The understanding of the cellular uptake and the intracellular fate of nanoparticles and their subsequent influence on cell viability is challenging as far as micelles are concerned. Such systems are dynamic by nature, existing as unimers under their critical micelle concentration (CMC), and as micelles in equilibrium with unimers above the CMC, making canonical dose-response relationships difficult to establish. The purpose of this study was to investigate the in vitro cytotoxicity and uptake of two micellar sytems that are relevant for drug delivery. The two micelles incorporate a poly(ethylene glycol) coating and a pentacosadiynoic core which is either polymerized (pDA-PEG micelles) or non-polymerized (DA-PEG micelles), with the aim of evaluating the influence of the micelles status ("particle-like" or "dynamic", respectively) on their toxicological profile. Intracellular distribution and cytotoxicity of polymerized and non-polymerized micelles were investigated on RAW 264.7 macrophages in order to compare any different interactions with cells. Non-polymerized micelles showed significantly higher cytotoxicity than polymerized micelles, especially in terms of cell permeabilization, correlated to a higher accumulation in cell membranes. Other potential toxicity endpoints of polymerized micelles were then thoroughly studied in order to assess possible responses resulting from their endocytosis. No specific mechanisms of cytotoxicity were observed, neither in terms of apoptosis induction, cell membrane damage, release of inflammatory mediators nor genotoxicity. These data indicate that non-polymerized micelles accumulate in the cell membrane and induce cell membrane permeabilization, resulting in significant toxicity, whereas polymerized, stable micelles are internalized by cells but exert no or very low toxicity.
Collapse
Affiliation(s)
- Federica Costamagna
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Hervé Hillaireau
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Juliette Vergnaud
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Damien Clarisse
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Lucie Jamgotchian
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Olivier Loreau
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Stéphanie Denis
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Elias Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| |
Collapse
|
7
|
Uboldi C, Sanles Sobrido M, Bernard E, Tassistro V, Herlin-Boime N, Vrel D, Garcia-Argote S, Roche S, Magdinier F, Dinescu G, Malard V, Lebaron-Jacobs L, Rose J, Rousseau B, Delaporte P, Grisolia C, Orsière T. In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. NANOMATERIALS 2019; 9:nano9091233. [PMID: 31480309 PMCID: PMC6780084 DOI: 10.3390/nano9091233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022]
Abstract
Tungsten was chosen as a wall component to interact with the plasma generated by the International Thermonuclear Experimental fusion Reactor (ITER). Nevertheless, during plasma operation tritiated tungsten nanoparticles (W-NPs) will be formed and potentially released into the environment following a Loss-Of-Vacuum-Accident, causing occupational or accidental exposure. We therefore investigated, in the bronchial human-derived BEAS-2B cell line, the cytotoxic and epigenotoxic effects of two types of ITER-like W-NPs (plasma sputtering or laser ablation), in their pristine, hydrogenated, and tritiated forms. Long exposures (24 h) induced significant cytotoxicity, especially for the hydrogenated ones. Plasma W-NPs impaired cytostasis more severely than the laser ones and both types and forms of W-NPs induced significant micronuclei formation, as shown by cytokinesis-block micronucleus assay. Single DNA strand breaks, potentially triggered by oxidative stress, occurred upon exposure to W-NPs and independently of their form, as observed by alkaline comet assay. After 24 h it was shown that more than 50% of W was dissolved via oxidative dissolution. Overall, our results indicate that W-NPs can affect the in vitro viability of BEAS-2B cells and induce epigenotoxic alterations. We could not observe significant differences between plasma and laser W-NPs so their toxicity might not be triggered by the synthesis method.
Collapse
Affiliation(s)
- Chiara Uboldi
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille Université, 13005 Marseille, France
| | - Marcos Sanles Sobrido
- CNRS, IRD, INRA, Coll France, CEREGE, Aix Marseille Université, 13545 Aix-en-Provence, France
| | - Elodie Bernard
- CNRS, LP3, Aix Marseille Université, 13005 Marseille, France
- CEA, CNRS, BIAM, Aix Marseille Université, 13108 Saint Paul-Lez-Durance, France
| | - Virginie Tassistro
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille Université, 13005 Marseille, France
| | | | - Dominique Vrel
- LSPM, Université Paris 13, UPR 3407 CNRS, 93430 Villetaneuse, France
| | | | - Stéphane Roche
- INSERM, MMG, Aix Marseille Université, 13005 Marseille, France
| | | | - Gheorghe Dinescu
- INFLPR, 409 Atomistilor Street, Magurele, 77125 Bucharest, Romania
| | - Véronique Malard
- CEA, CNRS, BIAM, Aix Marseille Université, 13108 Saint Paul-Lez-Durance, France
| | | | - Jerome Rose
- CNRS, IRD, INRA, Coll France, CEREGE, Aix Marseille Université, 13545 Aix-en-Provence, France
| | - Bernard Rousseau
- CEA, SCBM, Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | | | | | - Thierry Orsière
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille Université, 13005 Marseille, France.
| |
Collapse
|
8
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
9
|
Comparative Assessment of Tungsten Toxicity in the Absence or Presence of Other Metals. TOXICS 2018; 6:toxics6040066. [PMID: 30423906 PMCID: PMC6315525 DOI: 10.3390/toxics6040066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
Abstract
Tungsten is a refractory metal that is used in a wide range of applications. It was initially perceived that tungsten was immobile in the environment, supporting tungsten as an alternative for lead and uranium in munition and military applications. Recent studies report movement and detection of tungsten in soil and potable water sources, increasing the risk of human exposure. In addition, experimental research studies observed adverse health effects associated with exposure to tungsten alloys, raising concerns on tungsten toxicity with questions surrounding the safety of exposure to tungsten alone or in mixtures with other metals. Tungsten is commonly used as an alloy with nickel and cobalt in many applications to adjust hardness and thermal and electrical conductivity. This review addresses the current state of knowledge in regard to the mechanisms of toxicity of tungsten in the absence or presence of other metals with a specific focus on mixtures containing nickel and cobalt, the most common components of tungsten alloy.
Collapse
|
10
|
Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018; 48:522-539. [PMID: 30203727 DOI: 10.1080/10408444.2018.1491023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article summarizes recent experimental and epidemiological data on the genotoxic and carcinogenic activities of cobalt compounds. Emphasis is on the respiratory system, but endogenous exposure from Co-containing alloys used in endoprostheses, and limited data on nanomaterials and oral exposures are also considered. Two groups of cobalt compounds are differentiated on the basis of their mechanisms of toxicity: (1) those essentially involving the solubilization of Co(II) ions, and (2) metallic materials for which both surface corrosion and release of Co(II) ions act in concert. For both groups, identified genotoxic and carcinogenic mechanisms are non-stochastic and thus expected to exhibit a threshold. Cobalt compounds should, therefore, be considered as genotoxic carcinogens with a practical threshold. Accumulating evidence indicates that chronic inhalation of cobalt compounds can induce respiratory tumors locally. No evidence of systemic carcinogenicity upon inhalation, oral or endogenous exposure is available. The scarce data available for Co-based nanosized materials does not allow deriving a specific mode of action or assessment for these species.
Collapse
Affiliation(s)
- D Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - S van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - G Van Maele-Fabry
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Wills JW, Summers HD, Hondow N, Sooresh A, Meissner KE, White PA, Rees P, Brown A, Doak SH. Characterizing Nanoparticles in Biological Matrices: Tipping Points in Agglomeration State and Cellular Delivery In Vitro. ACS NANO 2017; 11:11986-12000. [PMID: 29072897 DOI: 10.1021/acsnano.7b03708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Understanding the delivered cellular dose of nanoparticles is imperative in nanomedicine and nanosafety, yet is known to be extremely complex because of multiple interactions between nanoparticles, their environment, and the cells. Here, we use 3-D reconstruction of agglomerates preserved by cryogenic snapshot sampling and imaged by electron microscopy to quantify the "bioavailable dose" that is presented at the cell surface and formed by the process of individual nanoparticle sequestration into agglomerates in the exposure media. Critically, using 20 and 40 nm carboxylated polystyrene-latex and 16 and 85 nm silicon dioxide nanoparticles, we show that abrupt, dose-dependent "tipping points" in agglomeration state can arise, subsequently affecting cellular delivery and increasing toxicity. These changes are triggered by shifts in the ratio of the total nanoparticle surface area to biomolecule abundance, with the switch to a highly agglomerated state effectively changing the test article midassay, challenging the dose-response paradigm for nanosafety experiments. By characterizing nanoparticle numbers per agglomerate, we show these tipping points can lead to the formation of extreme agglomeration states whereby 90% of an administered dose is contained and delivered to the cells by just the top 2% of the largest agglomerates. We thus demonstrate precise definition, description, and comparison of the nanoparticle dose formed in different experimental environments and show that this description is critical to understanding cellular delivery and toxicity. We further empirically "stress-test" the commonly used dynamic light scattering approach, establishing its limitations to present an analysis strategy that significantly improves the usefulness of this popular nanoparticle characterization technique.
Collapse
Affiliation(s)
- John W Wills
- Institute of Life Sciences, Swansea University Medical School , Singleton Park, Swansea, SA2 8PP, U.K
| | - Huw D Summers
- Centre for Nanohealth, Swansea University College of Engineering , Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, U.K
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds , Leeds, LS2 9JT, U.K
| | - Aishwarya Sooresh
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Kenith E Meissner
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
- Department of Physics, Swansea University College of Science , Singleton Park, Swansea, SA2 8PP, U.K
| | - Paul A White
- Department of Biology, University of Ottawa , 30 Marie-Curie Private, Ottawa K1N 9B4, Ontario, Canada
| | - Paul Rees
- Centre for Nanohealth, Swansea University College of Engineering , Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, U.K
- Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Andy Brown
- School of Chemical and Process Engineering, University of Leeds , Leeds, LS2 9JT, U.K
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School , Singleton Park, Swansea, SA2 8PP, U.K
| |
Collapse
|
12
|
Le Roux G, Moche H, Nieto A, Benoit JP, Nesslany F, Lagarce F. Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol In Vitro 2017; 41:189-199. [PMID: 28323104 DOI: 10.1016/j.tiv.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/01/2022]
Abstract
Lipid nanocapsules (LNCs) offer a promising method for the entrapment and nanovectorisation of lipophilic molecules. This new type of nanocarrier, formulated according to a solvent-free process and using only regulatory-approved components, exhibits many prerequisites for being well tolerated. Although toxicological reference values have already been obtained in mice, interaction of LNCs at the cell level needs to be elucidated. LNCs, measuring from 27.0±0.1nm (25nm LNCs) and 112.1±1.8nm (100nm LNCs) and with a zeta potential between -38.7±1.2mV and +9.18±0.4mV, were obtained by a phase inversion process followed by post-insertion of carboxy- or amino-DSPE-PEG. Trypan blue, MTS and neutral red uptake (NRU) assays were performed to evaluate the cytotoxicity of LNCs on mouse macrophage-like cells RAW264.7 after 24h of exposure. The determination of 50% lethal concentration (LC50) showed a size effect of LNCs on toxicity profiles: LC50 ranged from 1.036mg/L (MTS) and 0.477mg/mL (NRU) for 25nm LNCs, to 4.42mg/mL (MTS) and 2.18mg/mL (NRU) for 100nm LNCs. Surfactant Solutol® HS15 has been shown to be the only constituent to exhibit cytotoxicity; its LC50 reached 0.427mg/mL. Moreover, LNCs were not more toxic than their components in simple mixtures. At sublethal concentration, 100nm LNCs only were able to induce a significant production of nitric oxide (NO) by RAW264.7 cells, as assessed by the Griess reaction. Again, surfactant was the only component responsible for an increased NO release (1.8±0.2-fold). Genotoxicity assays revealed no DNA damage on human lymphocytes in both the in vitro Comet and micronucleus assays using 4-hour and 24-hour treatments, respectively.
Collapse
Affiliation(s)
- Gaël Le Roux
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France.
| | - Hélène Moche
- Laboratoire de Toxicologie, Institut Pasteur de Lille, EA 4483, 59019 Lille Cedex, France
| | - Alejandro Nieto
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| | - Jean-Pierre Benoit
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| | - Fabrice Nesslany
- Laboratoire de Toxicologie, Institut Pasteur de Lille, EA 4483, 59019 Lille Cedex, France
| | - Frédéric Lagarce
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
13
|
Moche H, Chevalier D, Vezin H, Claude N, Lorge E, Nesslany F. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 779:15-22. [PMID: 25813722 DOI: 10.1016/j.mrgentox.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/07/2015] [Accepted: 02/13/2015] [Indexed: 01/26/2023]
Abstract
We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells.
Collapse
Affiliation(s)
- Hélène Moche
- Institut Pasteur de Lille, 59019 Lille Cedex, France; Servier Group, 45520 Gidy, France; EA 4483, Université Lille 2, 59000 Lille, France
| | | | | | | | | | - Fabrice Nesslany
- Institut Pasteur de Lille, 59019 Lille Cedex, France; EA 4483, Université Lille 2, 59000 Lille, France.
| |
Collapse
|
14
|
Paget V, Moche H, Kortulewski T, Grall R, Irbah L, Nesslany F, Chevillard S. Human Cell Line-Dependent WC-Co Nanoparticle Cytotoxicity and Genotoxicity: A Key Role of ROS Production. Toxicol Sci 2014; 143:385-97. [DOI: 10.1093/toxsci/kfu238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|